Những câu hỏi liên quan
H24
Xem chi tiết
DH
12 tháng 8 2021 lúc 7:22

\(A_n=1+3+5+7+...+2n-1\)

\(A_1=1=1^2\)

\(A_2=1+3=2^2\)

Ta sẽ chứng minh \(A_n=n^2\).(1)

(1) đúng với \(n=1\).

Giả sử (1) đúng với \(n=k\ge1\)tức là \(A_k=k^2\).

Ta sẽ chứng minh (1) đúng với \(n=k+1\) tức là \(A_{k+1}=\left(k+1\right)^2\)

Thật vậy, ta có: \(A_{k+1}=1+3+5+...+2k-1+2\left(k+1\right)-1\)

\(=A_k+2\left(k+1\right)-1=k^2+2k+1=k^2+k+k+1=\left(k+1\right)^2\)

Ta có đpcm. 

Vậy \(A_n=n^2\)là số chính phương. 

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
NT
Xem chi tiết
JJ
19 tháng 6 2015 lúc 12:52

a) A có số số hạng là: (2n+1-1) :2 +1 = n+1 (số)

=> \(A=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                                           \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)

=> A là số chính phương

b) B có số số hạng là : (2n-2):2+1= n (số)

=> \(B=\frac{\left(2n+2\right).n}{2}=\frac{2\left(n+1\right).n}{2}=\left(n+1\right).n\)

=> B không là số chính phương.

Bình luận (0)
HH
3 tháng 12 2015 lúc 16:44

A có số số hạng là:

(2n+1-1):2+1=n+1(số)

=>\(\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                       \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)  

=>A là số chính phương

Bình luận (0)
TH
Xem chi tiết
HP
3 tháng 12 2015 lúc 16:47

Sô các số là : (2n-1) :2 +1 = n-1  
Ta có : (2n -1 +1 ) . (n -1 ) :2  =  ( 2n -2 ) . ( n -1 ) :2 
                                           = 2 ( n -1 ) .( n-1) 
                                            = ( n-1 ) . ( n - 1) = ( n -1 ) 2
Các bạn nên để ý đề , trong câu tương tự là  "+" còn đây là " - "

Bình luận (0)
NN
3 tháng 12 2015 lúc 16:42

vào câu hỏi tương tự có dsaay

Bình luận (0)
HH
3 tháng 12 2015 lúc 16:44

A có số số hạng là:

(2n+1-1):2+1=n+1(số)

=>\(\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                       \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)  

=>A là số chính phương

Bình luận (0)
ND
Xem chi tiết
NQ
Xem chi tiết
BD
21 tháng 8 2023 lúc 20:01

Số số hạng là: [(2n-1) - 1] : 2 +1 = n (số hạng)

M = n(2n-1+1) : 2 = n(2n):2 = n2

=> M là số chính phương

Bình luận (0)
LP
Xem chi tiết
H24
21 tháng 11 2015 lúc 19:14

 ĐỀ TỰ CHẾ À

Bình luận (0)
K1
Xem chi tiết
TL
13 tháng 10 2016 lúc 21:24

Ôf bạn thích diễn viên hàn à

mình thích khác cơ

mình thích ca sĩ hàn

kim tan 

(le min ho )

trong phim người thừa kế í

Bình luận (1)
SG
13 tháng 10 2016 lúc 21:25

\(A=1+3+5+...+\left(2n-1\right)\)

\(A=\left(\frac{\left(2n-1-1\right)}{2}+1\right).\left(2n-1+1\right):2\)

\(A=\left(\frac{2n-2}{2}+1\right).2n:2\)

\(A=\left(\frac{2.\left(n-1\right)}{2}+1\right).n\)

\(A=\left(n-1+1\right).n\)

\(A=n^2\)

Chứng tỏ...

Bình luận (0)
TP
20 tháng 9 2018 lúc 15:13

Số số hạng của A là :

( 2n - 1 - 1 ) : 2 + 1

= ( 2n - 2 ) : 2 + 1

= 2 ( n - 1 ) : 2 + 1

= n - 1 + 1

= n

=> Tổng A = ( 2n - 1 + 1 ) . n : 2

=> A = 2n . n : 2

=> A = 2n2 : 2

=> A = n2

=> A là số chính phương ( đpcm )

Bình luận (0)
LP
Xem chi tiết