tìm các số nguyên x,y biết:
\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
Tìm các số nguyên x,y biết rằng:
a)\(\frac{3}{x}+\frac{1}{3}=\frac{y}{3}\)
b)\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
c)\(\frac{2}{3x}+\frac{y}{6}=\frac{1}{2}\)
a) \(\Leftrightarrow\frac{9+x}{3x}=\frac{y}{3}\Leftrightarrow\frac{9+x}{3x}=\frac{xy}{3x}\)
\(\Leftrightarrow\) 9 + x = xy. Có nhiều x;y thỏa mãn với điều kiện 9 + x = xy
b) c) tương tự
Tìm các số nguyên x và y biết:
\(\frac{x}{3}-\frac{1}{y}=\frac{2}{6}\)
\(\frac{x}{3}-\frac{1}{y}=\frac{2}{6}\)
\(\frac{xy}{3y}-\frac{3}{3y}=\frac{1}{3}\)
\(\frac{xy-3}{3y}=\frac{1}{3}\)
=> 3 ( xy - 3 ) = 3y
=> xy - 3 = 3y
=> y ( x - 3 ) = 3 = 1 . 3 = 3 . 1 = (-1) . (-3) = (-3) . (-1)
Lập bảng tính x, y là xong
Ta có: \(\frac{x}{3}-\frac{1}{y}=\frac{2}{6}-\frac{1}{3}\)
Quy đồng mẫu hai vế ta có:
\(\frac{x}{3}-\frac{1}{y}=\frac{1}{3}\)
\(\frac{x.y}{3.y}-\frac{1.3}{y.3}=\frac{1.y}{3.y}\)
\(\frac{x.y}{3y}-\frac{3}{3y}=\frac{y}{3y}\)
\(\frac{xy}{3y}-\frac{y}{3y}=\frac{3}{3y}\)
\(\frac{xy-y}{3y}=\frac{3}{3y}\)
\(\Rightarrow xy-y=3\)
\(y.\left(x-1\right)=3\) \(\left[3=1.3=\left(-1\right).\left(-3\right)\right]\)
Vậy x = 4 thì y = 1.
x = 2 thì y = 3
x = -2 thì y = -1
x = 0 thì y = -3
X/3 - 1/Y = 2/6
Cách 1 : TA CÓ Cách 2 : ta có
X/Y-1/3=2/6 1/3 - X/Y=2/6
X/Y=2/6+1/3 X/Y =1/3-2/6
X/Y=2/3 X/Y = 0/3
Giúp mik với,trước 5h nha
Tìm các số nguyên x,y biết rằng:
a)\(\frac{3}{x}+\frac{1}{3}=\frac{y}{3}\)
b)\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
a) 3/x + 1/3 = y/3
3/x = y/3 - 1/3
3/x = y-1/3
=> 3 . 3 = x (y - 1)
=> 9 = x (y - 1)
=> x, y - 1 thuộc Ư(9) = {-9 ; -3 ; -1 ; 1 ; 3 ; 9}
Ta có bảng sau:
x | -9 | -3 | -1 | 1 | 3 | 9 |
y-1 | -1 | -3 | -9 | 9 | 2 | 1 |
y | 0 | -2 | -8 | 10 | 3 | 2 |
Vậy (x ; y) thuộc {(-9 ; 0) ; (-3 ; -2) ; (-1 ; -8) ; (1 ; 10) ; (3 ; 3) ; (9 ; 1)}.
b) x/6 - 1/y = 1/2
1/y = x/6 - 1/2
1/y = x/6 - 3/6
1/y = x-3/6
=> 6 = y (x - 3)
=> y, x - 3 thuộc Ư(6) = {-6 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 6}
...
Chỗ này bạn tự lập bảng nhé, tương tự như phần trước thôi ạ.
Ta có : \(\frac{3}{x}+\frac{1}{3}=\frac{y}{3}\)
=> \(\frac{3}{x}=\frac{y-1}{3}\)
=> x(y - 1) = 9
Lại có 9 = 3.3 = (-3).(-3) = 1.9 = (-1).(-9)
Lập bảng xét các trường hợp ta có
x | 1 | 9 | -1 | -9 | 3 | -3 |
y - 1 | 9 | 1 | -9 | -1 | 3 | -3 |
y | 10 | 2 | -8 | 0 | 4 | -2 |
Vậy các cặp (x;y) ta có : (1 ; 10) ; (9 ; 2) ; (-1 ; -8) ; (-9 ; 0) ; (3 ; 4) ; (-3 ; -2)
b) \(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
=> \(\frac{xy-6}{6y}=\frac{1}{2}\)
=> 2(xy - 6) = 6y
=> xy - 6 = 3y
=> xy - 3y = 6
=> y(x - 3) = 6
Ta có 6 = 1.6 = (-1).(-6) = 2.3 = (-2).(-3)
Lập bảng xét các trường hợp
y | 1 | 6 | -1 | -6 | 2 | 3 | -2 | -3 |
x - 3 | 6 | 1 | -6 | -1 | 3 | 2 | -3 | -2 |
x | 9 | 4 | -3 | -2 | 6 | 5 | 0 | 1 |
Vậy các cặp (x;y) ta có : (1;9) ; (6 ; 4) ; (-1 ; -3) ; (-6 ; -2) ; (2 ; 6) ; (3 ; 5) ; (-2 ; 0) ; (-3 ; 1)
a/
\(\Leftrightarrow9+x=xy\Leftrightarrow9=x\left(y-1\right)\Rightarrow x=\frac{9}{y-1}.\)
tìm số nguyên x và y biết rằng:\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
Tìm các số nguyên x, y biết:
\(\frac{2}{x}\)=\(\frac{1}{y}\) và x + y = 6
\(\frac{2}{x}\)\(=\frac{1}{y}\)
Ta có : 2 = 1 . 2
\(\Rightarrow\)x = y . 2
\(\Rightarrow\)y = \(\frac{1}{2}\)x
Coi y là 1 phần thì x là 2 phần như thế.
x là:
6 : ( 1 + 2 ) x 2 = 4
y là:
4 : 2 = 2
Vậy x =4 ; y=2
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
1.Tìm số nguyên x biết
\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
2.tìm các số nguyên x, y thỏa mãn
\(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)
Mình đang cần gấp! Cảm ơn nhiều
\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
\(\Leftrightarrow\left(\frac{x-2}{27}-1\right)+\left(\frac{x-3}{26}-1\right)+\left(\frac{x-4}{25}-1\right)+\left(\frac{x-5}{24}-1\right)\)\(+\left(\frac{x-44}{5}+3\right)=1-1\)
\(\Leftrightarrow\frac{x-29}{27}+\frac{x-29}{26}+\frac{x-29}{25}+\frac{x-29}{24}\)\(+\frac{x-29}{5}=0\)
\(\Leftrightarrow\left(x-29\right)\left(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\right)=0\)
Mà \(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\ne0\)
=> x - 29 = 0
=> x = 29.
Tìm các số nguyên dương x, y biết:
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)
Do x,y là các số nguyên dương nên \(\frac{1}{x}\ge1;\frac{1}{y}\ge1\Rightarrow\frac{1}{x}+\frac{1}{y}\ge2>\frac{1}{2}\)
nhầm xíu.thông cảm nha.để tớ làm lại=((
Lời giải
Vai trò của x;y là bình đẳng.Giả sử \(x\ge y>0\).
Hiển nhiên,ta có: \(\frac{1}{y}< \frac{1}{2}\Rightarrow y>2\)
Ta có: \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\Rightarrow y\le4\)
Kết hợp đk y nguyên dương suy ra \(3\le y\le4\)
Suy ra y = 3 hoặc y = 4
Với y = 4 thì x =4
Với y = 3 thì x = 6
Vậy \(\left(x;y\right)=\left\{\left(4;4\right),\left(3;6\right),\left(6;3\right)\right\}\)
a)Tìm cặp số x,y nguyên sao cho: \(\frac{x-1}{5}\)=\(\frac{3}{y+4}\)
b)Tìm các số nguyên x sao cho P=\(\frac{x-2}{x+1}\)nguyên
c)Tìm cặp số x,y nguyên sao cho: \(\frac{x}{3}\)- \(\frac{2}{y}\) = \(\frac{1}{6}\)