Cho dãy số: \(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};....\)
a) Tinh số hạng tổng quát của dãy
b) Tính tích 2020 số hang của dãy
Cho dãy số: \(\frac{1}{3};\frac{1}{{{3^2}}};\frac{1}{{{3^3}}};\frac{1}{{{3^4}}};\frac{1}{{{3^5}}};...\). Số hạng tổng quát của dãy số này là:
A. \({u_n} = \frac{1}{3}.\frac{1}{{{3^{n + 1}}}}\).
B. \({u_n} = \frac{1}{{{3^{n + 1}}}}\).
C. \({u_n} = \frac{1}{{{3^n}}}\).
D. \({u_n} = \frac{1}{{{3^{n - 1}}}}\).
Ta thấy dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân có số hạng đầu \({u_1} = \frac{1}{3}\) và công bội \(q = \frac{1}{3}\).
Số hạng tổng quát của dãy số là: \({u_n} = {u_1}.{q^{n - 1}} = \frac{1}{3}.{\left( {\frac{1}{3}} \right)^{n - 1}} = {\left( {\frac{1}{3}} \right)^n} = \frac{1}{{{3^n}}}\).
Chọn C.
Cho dãy số\(\frac{1}{1},\frac{1}{2},\frac{2}{2},\frac{1}{3},\frac{2}{3},\frac{3}{3},\frac{1}{4},\frac{2}{4},\frac{3}{4},\frac{4}{4},...\)
a. Tìm số hạng thứ 50 của dãy.
b. Phân số\(\frac{15}{30}\)là số hạng thứ bao nhiêu của dãy
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{n}{{{3^n} - 1}}\). Ba số hạng đầu tiên của dãy số \(\left( {{u_n}} \right)\) lần lượt là:
A. \(\frac{1}{2};\frac{1}{4};\frac{3}{{27}}\).
B. \(\frac{1}{2};\frac{1}{4};\frac{3}{{26}}\).
C. \(\frac{1}{2};\frac{1}{4};\frac{3}{{25}}\).
D. \(\frac{1}{2};\frac{1}{4};\frac{3}{{28}}\).
Ta có:
\(u_1=\dfrac{1}{3^1-1}=\dfrac{1}{2}\\ u_2=\dfrac{2}{3^2-1}=\dfrac{1}{4}\\ u_3=\dfrac{3}{3^3-1}=\dfrac{3}{26}\)
\(\Rightarrow B\)
cho dãy phân số: \(\frac{1}{1},\frac{1}{2},\frac{2}{1},\frac{1}{3},\frac{2}{2},\frac{3}{1},\frac{1}{4},\frac{2}{3},\frac{3}{2},\frac{4}{1},..\)hỏi phân số \(\frac{13}{25}\)là phân số thứ bao nhiêu trong dãy?
Cho dãy
\(\frac{1}{1},\frac{2}{1},\frac{1}{2},\frac{3}{1},\frac{2}{2},\frac{1}{3},\frac{4}{1},\frac{3}{2},\frac{2}{3},\frac{1}{4},....\)
a) Tìm quy luật của dãy và viết thêm 5 phân số nữa theo quy luật ấy
b) Phân số \(\frac{50}{31}\)là số hạng thứ mấy của dãy ?
Bạn tham khảo nhé ! Mk ko có thời gian nha !
a, Ở đây ta dễ thấy quy luật như sau :
Tử số : Nhóm 1: 1 - Nhóm 2: 1,2 - Nhóm 3 : 1 , 2 , 3 - Nhóm 4: 1 , 2 , 3 , 4 - Nhóm 5: 1 , 2 , 3 , 4 , 5 - .......
Mẫu số : Nhóm 1: 1 - Nhóm 2: 2 , 1 - Nhóm 3: 3 , 2 , 1 - Nhóm 4: 4 ; 3 ; 2 ; 1 - Nhóm 5: 5 ; 4 ; 3 ; 2 ; 1 - ......
Vậy 5 phân số tiếp theo thuộc 5 nhóm lần lượt là : 1/5 ; 2/4 ; 3/3 ; 4/2 5/1
b, 26/7 có tử số là 26 và mẫu số là 7 vậy nó thuộc nhóm thứ 33 của dãy số , và đứng thứ 26 .
Số các phân số từ nhóm 1 đến 32 là :
1 + 2 + 3 + .... + 32 = 528
Vậy 26/7 đứng thứ :
528 + 26 = 554 .
Đáp số : ...... ( tự vt )
k mk nha Nguyễn Văn Cường
cho dãy số \(1;\frac{1}{3};\frac{1}{6};\frac{1}{12};\frac{1}{24};...\)
tính tổng 10 số hạng đầu tien của dãy.
\(\frac{213}{128}\)
Dễ dàng nhận thấy dãy số từ 1/3; 1/6... đến n=9 là một cấp số nhân có tổng Sn=1/3x((1/2^9)-1)/(1/2-1)=511/768
Vậy tổng của 10 số hạng đầu tiên của dãy số là: 1+ 511/768=1279/768
Cho dãy số: \(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};1\frac{1}{35};...\)
a) Hỏi số hạng thứ 10 của dãy số trên là số nào? ( dạng hỗn số )
b) Gọi A là tích 10 số hạng đầu tiên của dãy. Tính 6A.
\(a.1\frac{1}{120}\)
nha bạn
Nguyễn Anh Kim Hân\(a.1\frac{1}{120}\)
k mk nha Nguyễn Anh Kim Hân
cái biểu tượng hình cái chuông ghi là Quản lý thông báo của Online math là sao vậy các bn
Bài 3:
Cho dãy số viết theo quy luật: \(1\frac{1}{2};1\frac{1}{5};1\frac{1}{9};1\frac{1}{14};1\frac{1}{20};...\) (1)
a) Hãy viết tiếp vào chỗ ... số thứ sáu theo quy luật của dãy.
b)Tìm số thứ 50 của dãy (1)
c) Chứng minh rằng tích 50 số đầu tiên của dãy nhỏ hơn 3.
Cho dãy số: \(1\frac{1}{3};1\frac{1}{3^2};1\frac{1}{3^4};1\frac{1}{3^4};1\frac{1}{3^8};1\frac{1}{3^{16}};.......\)
a) Tìm số hạng tổng quát của dãy
b) Goi A là tích của 11 số hạng đầu tiên của dãy . Chứng minh \(\frac{1}{3-2A}\)là số tự nhiên
c) Tìm chư số tận cùng của B=\(\frac{3}{3-2A}\)
có ai giúp mình giải bài này với