Cho hình bình hành ABCD .Vẽ AE và CF vuông góc với BD. Chứng Minh AE=CF
Cho hình bình hành ABCD .Vẽ AE và CF vuông góc với BD. Chứng Minh AE=CF
Cho hình bình hành ABCD. Từ A và C kẻ AE vuông góc với BD, CF vuông góc với BD. Chứng minh rằng AE, CF là hình bình hành.
Vì ABCD là hình bình hành
=> + AB = DC
AB // DC => góc ABE = góc FCD ( sole trong )
+ AD= BC
AD // BC
+) Xét \(\Delta AEB\)và \(\Delta CFD\)có :
\(AB=CD\left(cmt\right)\)
\(\widehat{AEB}=\widehat{CFD}=90^o\)(gt )
\(\widehat{ABE}=\widehat{FCD}\)(cmt)
Do đó : tam giác vuông AEB = tam giác vuông CFD ( cạnh huyền - góc nhọn )
\(\Rightarrow AE=FC\)( cặp cạnh tương ứng ) (1)
+) vÌ \(\hept{\begin{cases}AE\perp DB\\FC\perp DB\end{cases}}\)
=> AE // FC (2)
Từ (1) và (2)
=> AECF là hình bình hành ( đpcm )
Cho hình bình hành ABCD có AB>AD. Kẻ AE, CF cùng vuông góc với BD ( E,F thuộc BD)
a, Chứng minh AE // CF và AE = CF.
b, AECF là hình gì? Vì sao?
c, Cho AE = 12 cm, BD = 18 cm. Tính diện tích ABCD.
bạn đã tìm ra lời giải chưa chỉ mình với nhanh nhanh nha mình sắp nộp bài rồi cảm ơn
Cho hình bình hành ABCD (AB > AD). Vẽ AE, CF vuông góc BD. AE kéo dài cắt CD tại H và CF kéo dài cắt AB tại K. Chứng minh rằng:
a) Tứ giác AECF là hình bình hành
b) AC, BD, HK đồng quy
a: AE\(\perp\)BD
CF\(\perp\)BD
Do đó: AE//CF
Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
=>AE=CF
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: AE//CF
E\(\in\)AH
F\(\in\)CK
Do đó: AH//CK
AB//CD
K\(\in\)AB
H\(\in\)CD
Do đó: AK//CH
Xét tứ giác AHCK có
AH//CK
AK//CH
Do đó: AHCK là hình bình hành
=>AC cắt HK tại trung điểm của mỗi đường(1)
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,HK,BD đồng quy
Cho hình bình hành ABCD . AB > AD , AE vuông góc với BD , CF vuông góc với BD (E,F thuộc BD) . AE kéo dài cắt CD tại H . CF kéo dài cắt AB tại K . Chứng minh :
a) Tứ giác AECF là hình bình hành.
b) Tứ giác AHDK là hình bình hành.
Cho hình bình hành ABCD . AB > AD , AE vuông góc với BD , CF vuông góc với BD (E,F thuộc BD) . AE kéo dài cắt CD tại H . CF kéo dài cắt AB tại K . Chứng minh :
a) Tứ giác AECF là hình bình hành.
b) Tứ giác AHDK là hình bình hành.
Cho hình bình hành ABCD . AB > AD , AE vuông góc với BD , CF vuông góc với BD (E,F thuộc BD) . AE kéo dài cắt CD tại H . CF kéo dài cắt AB tại K . Chứng minh :
a) Tứ giác AECF là hình bình hành.
b) Tứ giác AHDK là hình bình hành.
a) ABCD là hình bình hành => AD=BC, AD//BC
--->Dễ dàng có được \(\Delta AED=\Delta CFB\left(c.g.c\right)\Rightarrow AE=CF\)
Mà AE//CF (cùng vuông góc BD) => AECF là hình bình hành.
b) AHDK không thể là hình bình hành nha --> phải là AHCK
Chứng minh: AH//CK (cùng vuông góc BD)
CH//AK (vì ABCD là hình bình hành)
=> AHCK là hình bình hành
Cho hình bình hành ABCD , kẻ AE và CF vuông góc với BD . AC cắt BD tại I . Chứng minh: I là trung điểm của EF .
Cho hình bình hành ABCD, Có hai đường chéo AC và BD cắt nhau tại O. Từ A kẻ AE vuông góc với BD, từ C kẻ CF vuông góc với BD. Chứng minh rằng Tứ giác AECF là hình bình hành.
Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB(Hai cạnh đối của hình bình hành ABCD)
\(\widehat{D}=\widehat{B}\)(Hai góc đối của hình bình hành ABCD)
Do đó: ΔAED=ΔCFB(cạnh huyền-góc nhọn)
Suy ra: AE=CF(Hai cạnh tương ứng) và ED=FB(hai cạnh tương ứng)
Ta có: ED+EC=DC(E nằm giữa D và C)
FB+FA=AB(F nằm giữa A và B)
mà AB=DC(Hai cạnh đối của hình bình hành ABCD)
và ED=FB(cmt)
nên EC=FA
Xét tứ giác ECFA có
EC=FA(cmt)
EA=CF(cmt)
Do đó: ECFA là hình bình hành(Dấu hiệu nhận biết hình bình hành)