Chứng tỏ rằng 81^8 - 27^10 - 9^14 chia hết cho 71
Chứng tỏ rằng 81^8-27^10-9^14 chia hết cho 71
Có:
+) \(81^4\equiv60\left(mod71\right)\)
\(\left(81^4\right)^2\equiv60^2\equiv50\left(mod71\right)\) (1)
+) \(27^5\equiv20\left(mod71\right)\)
\(\left(27^5\right)^2\equiv20^2\equiv45\left(mod71\right)\) (2)
+) \(9^7\equiv54\left(mod71\right)\)
\(\left(9^7\right)^2\equiv54^2\equiv5\left(mod71\right)\) (3)
Từ (1), (2), (3):
\(\Rightarrow81^8-27^{10}-9^{14}\equiv50-45-5\equiv0\left(mod71\right)\)
=> \(81^8-27^{10}-9^{14}⋮71\left(đpcm\right)\)
Chứng minh rằng 81^8 - 27^10 - 9^14 chia hết cho 71
Chứng minh \(81^8-27^{10}-9^{14}\)chia hết cho 71
\(=\left(3^4\right)^8-\left(3^3\right)^{10}-\left(3^2\right)^{14}\)
\(=3^{32}-3^{30}-3^{28}\)
\(=3^{28}.\left(3^4-3^2-1\right)\)
\(=3^{28}.71_{ }\)
=> \(81^8-27^{10}-9^{14}\) chia hết cho 71
chứng tỏ rằng :
a) 10^9+10^8+10^7 chia hết cho 555
B)81^7 - 27^9 - 9^13 chia hết cho 45
Chứng tỏ rằng:8^10-8^8-8^9 chia hết cho 55
7^6+7^5-7^4 chia hết cho11
81^7-27^9-9^13 chia hết cho 45
109+10^8+10^7 chia hết cho 555
a, 810 - 89 - 88 = 88(82 - 8 - 1) = 88.55 chia hết cho 55
b, 76 + 75 - 74 = 74(72 + 7 - 1) = 74.55 = 74.5.11 chia hết cho 11
c, 817 - 279 - 913 = 328 - 327 - 326 = 324(34 - 33 - 32) = 324.45 chia hết cho 45
d, 109 + 108 + 107 = 106(103 + 102 + 10) = 106.1110 = 106.2.555 chia hết cho 555
tại sao lại là (82 - 8 - 1) có ai giải thích hộ mình ko
Chứng tỏ rằng
a) 8^10-8^9-8^8 chia hết cho 55
b) 81^7-27^9-9^13 chia hết cho 45
c) 7^6 +7^5-7^4 chia hết cho 11
d) 10^9+10^8+10^7 chia hết cho 555
a, Đặt A = 810 - 89 - 88 = 88.82 - 88.81 - 88.1 = 88.(82 - 81 -1) = 88.55
Vì 55 chia hết cho 55 nên 88 chia hết cho 55 hay A chia hết cho 55.
b, Đặt B = 76 + 75 - 74 = 74.72 + 74.71 + 74.1 = 74.(72 + 71 - 1) = 74.55
Vì 55 chia hết cho 55 nên 74.55 chia hết cho 55 hay B chia hết cho 55.
c, Đặt C = 817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 ( Đến dây thì tương tự như phần a bạn nhé)
d, Phần này cũng tương tự phần a.
Giải:
a) \(8^{10}-8^9-8^8=8^8.\left(8^2-8-1\right)=8^8.55⋮5\)
\(\Rightarrow8^{10}-8^9-8^8⋮55\left(đpcm\right)\)
b) \(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}=3^{24}\left(3^4-3^3-3^2\right)=3^{24}.45⋮5\)
\(\Rightarrow81^7-27^9-9^{13}⋮45\left(đpcm\right)\)
c) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮11\left(55⋮11\right)\)
\(\Rightarrow7^6+7^5-7^4⋮11\left(đpcm\right)\)
d) \(10^9+10^8+10^7=10^6.\left(10^3+10^2+10\right)=10^7.1110⋮555\left(1110⋮555\right)\)
\(\Rightarrow10^9+10^8+10^7⋮555\left(đpcm\right)\)
Chứng tỏ rằng
a) 8^10-8^9-8^8 chia hết cho 55
b) 81^7-27^9-9^13 chia hết cho 45
c) 7^6 +7^5-7^4 chia hết cho 11
d) 10^9+10^8+10^7 chia hết cho 555
Câu hỏi của Asari Tinh Nghịch - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài làm của bạn ST nhé!
1. chứng tỏ rằng
a. 81 mũ 7 - 27 mũ 9 - 9 mũ 13 chia hết cho 45
b. 10 mũ 9 + 10 mũ 8 + 10 mũ 7 chia hết cho 222
\(81^7 - 27^9 - 9^{13}\\ = (3^4)^7 - (3^3)^9 - (3^2)^{13} \\ = 3^{4.7} - 3^{3.9} - 3^{2.13} \\ = 3^{28} - 3^{27} - 3^{26} \\ = 3^{24}(3^4-3^3-3^2) \\ = 3^{24}(81-27-9) \\ =3^{24} . 45 \vdots 45 \)
\(10^9+10^8+10^7\\=10^6(10^3+10^2+10)\\=10^6(1000+100+10)\\=10^6 . 1110 \\ =10^6 . 5 .222\vdots 222\)
Chứng minh rằng (8110-2712-918) chia hết cho 71