rút gọn -|x 1/2| |1/3-x| khi x>2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Rút gọn biểu thức
Rút gọn biểu thức
(x-1)(x-2)(x+2)-(x-3)^3
(xy-1)(xy-2)-(xy-2)^2
(x-1)(x-2)(x+2)-(x-3)\(^3\)
=(x-1)(x\(^2\)-4)-(x-3)\(^3\)
(xy-1)(xy-2)-(xy-2)\(^2\)
=(xy-2)(xy-1-xy+2)
=xy-2
Rút gọn B = (2x+3)\(^2\)-(4x+6)(x+1)+(x+1)\(^2\)
Rút gọn
\(\dfrac{x^3-3x^2+3x-1}{x^2y-xy-x+1}\)
\(=\dfrac{\left(x-1\right)^3}{xy\left(x-1\right)-\left(x-1\right)}=\dfrac{\left(x-1\right)^3}{\left(xy-1\right)\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{xy-1}\left(xy\ne1;x\ne1\right)\)
Cho A = \(\dfrac{x^2-4x+4}{2x^2-4x}\) (x ≠ 0, x ≠ 2)
a, Rút gọn A
b, Tính A khi x=\(\dfrac{1}{2}\)
a. \(\dfrac{\left(x-2\right)^2}{2x\left(x-2\right)}=\dfrac{x-2}{2x}\)
b. \(\dfrac{\dfrac{1}{2}-2}{2.\dfrac{1}{2}}=-1,5\)
cho bt: 1/x - 1 + 1/ x+ 1 + 4x +2/ x2 - 1
a, rút gọn bt.
b, tìm x khi A = 4/2015
Rút gọn
a) (x^2-1)^3 - (x^4+x^2+1) ).(x^2-1)
b) (x^4 - 3x^2+9).(x^2+3) - (3+x^2)^3
rút gọn B = ( 1 - 1/2 ) x ( 1 -1/3 ) x ( 1 - 1/4 ) .... ( 1 -1/20 )
B= \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).....\left(1-\dfrac{1}{20}\right)\)
B= \(\dfrac{1}{2}.\dfrac{2}{3}.....\dfrac{19}{20}\)
B= \(\dfrac{1.2.....19}{2.3.....20}\)
B= \(\dfrac{1}{20}\)
Cho biểu thức C=\(\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\dfrac{1-x^3}{1-x}+x\right)\left(\dfrac{1+x^3}{1+x}-x\right)\right]\) Với \(x\ne\pm1\)
a, Rút gọn C
b, Tính giá trị của C khi x=\(-1\dfrac{1}{2}\)
c, Tìm x biết C=\(\dfrac{1}{2}\)
d, Chứng minh 2C<1
a) Ta có: \(C=\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\dfrac{1-x^3}{1-x}+x\right)\left(\dfrac{1+x^3}{1+x}-x\right)\right]\)
\(=\dfrac{x\left(x^2-1\right)^2}{x^2+1}:\left[\left(\dfrac{\left(1-x\right)\left(1+x+x^2\right)}{1-x}+x\right)\left(\dfrac{\left(1+x\right)\left(1-x+x^2\right)}{\left(1+x\right)}-x\right)\right]\)
\(=\dfrac{x\left(x^2-1\right)^2}{x^2+1}:\left[\left(x^2+2x+1\right)\left(x^2-2x+1\right)\right]\)
\(=\dfrac{x\left(x-1\right)^2\cdot\left(x+1\right)^2}{\left(x^2+1\right)}\cdot\dfrac{1}{\left(x+1\right)^2\cdot\left(x-1\right)^2}\)
\(=\dfrac{x}{x^2+1}\)
b) Thay \(x=-\dfrac{3}{2}\) vào C, ta được:
\(C=\dfrac{-3}{2}:\left(\dfrac{9}{4}+1\right)=\dfrac{-3}{2}:\dfrac{13}{4}=\dfrac{-3}{2}\cdot\dfrac{4}{13}=\dfrac{-6}{13}\)
c) Ta có: \(C=\dfrac{1}{2}\)
nên \(\dfrac{x}{x^2+1}=\dfrac{1}{2}\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)(Loại)
Cho biểu thức C=\(\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\dfrac{1-x^3}{1-x}+x\right)\left(\dfrac{1+x^3}{1+x}-x\right)\right]\) Với \(x\ne\pm1\)
a, Rút gọn C
b, Tính giá trị của C khi \(x=-1\dfrac{1}{2}\)
c, Tìm x biết \(C=\dfrac{1}{2}\)
d, Chứng minh 2C<1