hời 2/3 + 2/3 =
a 4/3 b 3/4 c 1 d 4/2
A. 1 - b, 2 - a, 3 - d, 4 - c.
B. 1 - b, 2 - d, 3 - a, 4 - c.
C. 1 - c, 2 - a, 3 - d, 4 - b.
D. 1 - c, 2 - b, 3 - d, 4 - a.
A. 1-c; 2-a, d; 3-g; 4-b, e.
B. 1-c; 2-a, e; 3-d, g; 4-b.
C. 1-a, d; 2-c; 3-b, e; 4-g.
D. 1-a, e; 2-c, d; 3-b; 4-g.
Nối cột A tương ứng với cột b
A. 1-b,2-a,3-d,4-c.
B. 1-a,2-b,3-c,4-d.
C. 1-d,2-c,3-b,4-a.
D. 1-d,2-a,3-c,4-b.
a, x + 2 3/4=5 2/3
b, x - 1 4/5=3 2/7
c, x x 3 1/2=4 3/4
d, x : 2 2/3=4 1/3
a) \(x+2\dfrac{3}{4}=5\dfrac{2}{3}\)
\(x+\dfrac{11}{4}=\dfrac{17}{3}\)
\(x=\dfrac{17}{3}-\dfrac{11}{4}\)
\(x=\dfrac{35}{12}\)
b) \(x-1\dfrac{4}{5}=3\dfrac{2}{7}\)
\(x-\dfrac{9}{5}=\dfrac{23}{7}\)
\(x=\dfrac{23}{7}+\dfrac{9}{5}\)
\(x=\dfrac{178}{35}\)
c) \(x\times3\dfrac{1}{2}=4\dfrac{3}{4}\)
\(x\times\dfrac{7}{2}=\dfrac{19}{4}\)
\(x=\dfrac{19}{4}\div\dfrac{7}{2}\)
\(x=\dfrac{19}{14}\)
d) \(x\div2\dfrac{2}{3}=4\dfrac{1}{3}\)
\(x\div\dfrac{8}{3}=\dfrac{13}{3}\)
\(x=\dfrac{13}{3}\times\dfrac{8}{3}\)
\(x=\dfrac{104}{9}\)
a) \(...=x+\dfrac{11}{3}=\dfrac{17}{3}\Rightarrow x=\dfrac{17}{3}-\dfrac{11}{3}=\dfrac{6}{3}=2\)
b) \(...\Rightarrow x-\dfrac{9}{5}=\dfrac{23}{7}\Rightarrow x=\dfrac{23}{7}+\dfrac{9}{5}=\dfrac{115}{35}+\dfrac{36}{35}=\dfrac{151}{35}\)
c) \(...\Rightarrow x.\dfrac{7}{2}=\dfrac{19}{4}\Rightarrow x=\dfrac{19}{4}:\dfrac{7}{2}\Rightarrow x=\dfrac{19}{4}.\dfrac{2}{7}=\dfrac{19}{14}\)
d) \(...\Rightarrow x:\dfrac{8}{3}=\dfrac{13}{3}\Rightarrow x=\dfrac{13}{3}.\dfrac{8}{3}=\dfrac{124}{9}\)
Bài 6 : Tính giá trị các biểu thức .
a. A = -5/7 + 7/-5 + 4/7 + 7/4 .
b. B = 2/-5 + -3/7 + -7/10 + 3/-8 .
c. C = -5/7 + 2/-7 + 4/-9 + 4/9 .
d. D = ( 3 - 3/4 + 2/3 ) - ( 2 + 4/3 - 3/2 ) - ( 1 - 7/3 - 9/2 ) .
Câu 1: Các viết tập hợp nào sau đây đúng?
A. A = [1; 2; 3; 4]
B. A = (1; 2; 3; 4)
C. A = { 1, 2, 3, 4}
D. A = {1; 2; 3; 4}
Câu 2: Cho B = {a; b; c; d}. Chọn đáp án sai trong các đáp án sau?
A. a ∈ B B. b ∈ B C. e ∉ B D. g ∈ B
1C. A = { 1, 2, 3, 4} và D. A = {1; 2; 3; 4}.
TÍNH TỔNG
a, A=2^0+2^1+2^2+...+2^2010
b, B=1+3+3^2+...+3^100
c, C=4+4^2=4^3+...+4^n
d, D=1+5+5^2+...+5^2000
\(a,A=2^0+2^1+2^2+....+\)\(2^{2010}\)
\(\Rightarrow2A=2^1+2^2+2^3+....+2^{2011}\)
\(2A-A=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(A=2^{2011}-2^0\)
\(A=2^{2011}-1\)
\(b,B=1+3+3^2+...+3^{100}\)
\(\Rightarrow3B=3+3^2+3^3+...+3^{101}\)
\(3B-B=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)
\(2B=3^{101}-1\)
\(\Rightarrow B=\frac{3^{101}-1}{2}\)
\(c,C=4+4^2+4^3+...+4^n\)
\(\Rightarrow4C=4^2+4^3+4^4+...+4^{n+1}\)
\(4C-C=\left(4^2+4^3+4^4+...+4^{n+1}\right)-\left(4+4^2+4^3+...+4^n\right)\)
\(3C=4^{n+1}-4\)
\(\Rightarrow C=\frac{4^{n+1}-4}{3}\)
\(d,D=1+5+5^2+...+5^{2000}\)
\(\Rightarrow5D=5+5^2+5^3+...+5^{2001}\)
\(5D-D=\left(5+5^2+5^3+...+5^{2001}\right)-\left(1+5+5^2+...+5^{2000}\right)\)
\(4D=5^{2001}-1\)
\(\Rightarrow D=\frac{5^{2001}-1}{4}\)
b)
B=1+3+3^2+3^3+..+3^100
=> 3B = 3 + 3^2 + 3^3 + ...+ 3^101
=> 3B - B = ( 3 + 3^2 + 3^3 + ...+ 3^101) - (1+3+3^2+3^3+..+3^100)
=> 2B = 3^101 - 1
=> B =( 3^101 - 1) / 2
2.a/3.b + 3.b/4.c + 4.c/5.d + 5.d/2.a biết 2.a/3.b = 3.b/4.c = 4.c/5.d = 5.d/2.a
1/tính nhanh
D=1^2+2^2+3^2+.......+1999^2
2/tính nhanh
a,A=1*3+2*4+3*5+....+99*101
b,B=1*4+2*5+3*6+4*7+.......+99*102
c,C=2^2+4^2+6^2+......+98^2+100^2
d,D=1*2^2+2*3^2+3*4^2+......+98.99^2