P(x)=\(8x^2-5x-\left(-1\right)\)
Tìm nghiệm của đa thức
Tìm 1 nghiệm của các đa thức sau, biết:
a. \(f(x)=2x^2-5x+3\)
b. \(g\left(x\right)=7x^2-8x-15\)
\(b)\) Ta có :
\(7x^2-8x-15=0\)
\(\Leftrightarrow\)\(\left(7x^2+7x\right)-\left(15x+15\right)=0\)
\(\Leftrightarrow\)\(7x\left(x+1\right)-15\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left(7x-15\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}7x-15=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}7x=15\\x=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{15}{7}\\x=-1\end{cases}}}\)
Vậy nghiệm của đa thức \(g\left(x\right)=7x^2-8x-15\) là \(x=\frac{15}{7}\) hoặc \(x=-1\)
Chúc bạn học tốt ~
\(a)\) Ta có :
\(2x^2-5x+3=0\)
\(\Leftrightarrow\)\(\left(2x^2-2x\right)+\left(-3x+3\right)=0\)
\(\Leftrightarrow\)\(2x\left(x-1\right)+\left(-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(2x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-3=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=3\\x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}}\)
Vậy nghiệm của đa thức \(f\left(x\right)=2x^2-5x+3\) là \(x=\frac{3}{2}\) hoặc \(x=1\)
Chúc bạn học tốt ~
Tìm một nghiệm của mỗi đa thức sau :
a) \(f\left(x\right)=x^3-x^2+x-1\)
b) \(y\left(x\right)=11x^3+5x^2+4x+10\)
c) \(h\left(x\right)=-17x^3+8x^2-3x+12\)
a) x3-x2+x-1=0
=>(x3-x2)+(x-1)=0
=>x2(x-1)+(x-1)=0
(x-1)(x2+1)=0
Ta có \(x^2+1>0\) ( vì \(x^2\ge0\) )
=>x-1=0
x=1
Vậy x=1 là nghiệm của f(x)
b)11x3+5x2+4x+10=0
=>(10x3+10)+(x3+x2)+(4x2+4x)=0
=>10(x3+1)+x2(x+1)+4x(x+1)=0
10(x+1)(x2-x+1)+x2(x+1)+4x(x+1)=0
(x+1)[10(x2-x+1)+x2+4x]=0
(x+1)(11x2-6x+10)=0
(x+1)[(9x2-2.3x+1)+9]=0
(x+1)[(3x-1)2+2x2+9]=0
=>x+1=0
x=-1
Vậy -1 là nghiệm của y(x)
c)-17x3+8x2-3x+12=0
c)-17x3+8x2-3x+12=0
-12x3-5x3+5x2+3x2-3x+12=0
(-12x3+12)-(5x3-5x2)+(3x2-3x)=0
-12(x3-1)-5x2(x-1)+3x(x-1)=0
-12(x-1)(x2+x+1)-5x2(x-1)+3x(x-1)=0
(x-1)[-12(x2+x+1)-5x2+3x]=0
(x-1)[-12x2-12x-12-5x2+3x]=0
(x-1)[-17x2-9x-12]=0
(x-1)[-(17x2+9x+12)]=0
(x-1)[-(4x2+2.4x2+4x2+x2+12]
(x-1)[-(2x+2x)2+12]=0
=>x-1=0
x=1
Cho hai đa thức:
\(A\left(x\right)=-4x^5-x^3+4x^2+5x+7+4x^5-6^2\)
\(B\left(x\right)=-3^4-4x^3+10x^2-8x+5x^3-7+8x\)
a, Thu gọn mỗi đa thức trê rồi sắp xếp chúng theo lũy thừa giảm dần của biến.
b, Tính \(P\left(x\right)=A\left(x\right)+B\left(x\right)\)và \(Q\left(x\right)=A\left(x\right)-B\left(x\right)\)
C, Chứng tỏ rằng \(x=-1\)là nghiệm của đa thức \(P\left(x\right)\)
Tìm nghiệm của các đa thức sau:
a) \(\left(2x-\dfrac{3}{2}\right)\left(\left|x\right|-5\right)\)
b) \(x-8x^4\)
c) \(x^2-\left(4x+x^2\right)-5\)
a: (2x-3/2)(|x|-5)=0
=>2x-3/2=0 hoặc |x|-5=0
=>x=3/4 hoặc |x|=5
=>\(x\in\left\{\dfrac{3}{4};5;-5\right\}\)
b: x-8x^4=0
=>x(1-8x^3)=0
=>x=0 hoặc 1-8x^3=0
=>x=1/2 hoặc x=0
c: x^2-(4x+x^2)-5=0
=>x^2-4x-x^2-5=0
=>-4x-5=0
=>x=-5/4
Tìm một nghiệm của mỗi đa thức sau :
a) \(f\left(x\right)=x^3-x^2+x-1\)
b) \(g\left(x\right)=11x^3+5x^2+4x+10\)
c) \(h\left(x\right)=-17x^3+8x^2-3x+12\)
a) Ta có: \(x^3-x^2+x-1=0\)
\(\Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(x^2+1\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=1\end{matrix}\right.\)
Vậy x = 1 là nghiệm của đa thức f(x)
b, c: @Ace Legona
a)\(f\left(x\right)=x^3-x^2+x-1\)
Cho \(f\left(x\right)=0\Rightarrow x^3-x^2+x-1=0\)
\(\Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x^2+1\right)=0\)
Dễ thấy: \(x^2+1\ge1>0\forall x\) ( vô nghiệm )
\(\Rightarrow x-1=0\Rightarrow x=1\)
b)\(g\left(x\right)=11x^3+5x^2+4x+10\)
Cho \(g\left(x\right)=0\Rightarrow11x^3+5x^2+4x+10=0\)
\(\Rightarrow11x^3-6x^2+10x+11x^2-6x+10=0\)
\(\Rightarrow x\left(11x^2-6x+10\right)+\left(11x^2-6x+10\right)=0\)
\(\Rightarrow\left(x+1\right)\left(11x^2-6x+10\right)=0\)
Dễ thấy:
\(11x^2-6x+10=11\left(x-\dfrac{3}{11}\right)^2+\dfrac{101}{11}\ge\dfrac{101}{11}>0\forall x\) (vô nghiệm)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
c)\(h\left(x\right)=-17x^3+8x^2-3x+12\)
Cho \(h\left(x\right)=0\Rightarrow-17x^3+8x^2-3x+12=0\)
\(\Rightarrow17x^2+9x+12-17x^3-9x^2-12x=0\)
\(\Rightarrow\left(17x^2+9x+12\right)-x\left(17x^2+9x+12\right)=0\)
\(\Rightarrow\left(1-x\right)\left(17x^2+9x+12\right)=0\)
Dễ thấy:
\(17x^2+9x+12=17\left(x+\dfrac{9}{34}\right)^2+\dfrac{735}{68}\ge\dfrac{735}{68}>0\forall x\)(vô nghiệm)
\(\Rightarrow1-x=0\Rightarrow x=1\)
Cho đa thức \(f\left(x\right)=\left(3x-1\right)^2-\left(x^2-4\right)-\left(8x^2+2x-3\right)\)và \(g\left(x\right)=ax^2+bx-4\)
a)Thu gọn đa thức f(x)
b)Tìm a và b của đa thức g(x) biết rằng g(x)=0 tại x=1 ; x=4
c)CMR g(x)=(1-x)(x-4)
d)Viết đa thức h(x)=f(x)+g(x) thành tích số
e)Tìm nghiệm của đa thức h(x)
Bài 1. Cho đa thức M= \(2x^2\)+\(5x\)-\(12\)
a.) Xác định bậc, hệ số cao nhất , hệ số tự do của đa thức M
b.)Cho đa thức N=\(x^2\)-\(8x\)-\(1\) .Hãy tính tổng M+N
c.)Tìm đa thức P biết rằng \(P\left(2x-3\right)\)-\(M\)
a: Bậc là 2
Hệ số cao nhất là 2
Hệ số tự do là -12
b: M+N
=2x^2+5x-12+x^2-8x-1
=3x^2-3x-13
Cho đa thức f(x)= \(\left(3x-1\right)^2-\left(x^2-4\right)-\left(8x^2+2x-3\right)\)
và g(x)= \(ax^2+bx-4\)
a, Thu gọn đa thức f(x)
b, Tìm a và b của đa thức g(x) biết rằng g(x)=0 tại x=1 và x=4
c, Chứng minh g(x)=(1-x)(x-4)
d, Viết đa thức h(x) = f(x) + g(x) thành 1 tích
e, Tìm nghiệm của h(x) (tìm đủ các nghiệm)
Cho hai đa thức: \(P\left(x\right)=5x^3-4x+7\) và \(Q\left(x\right)=-5x^3-x^2+4x-5\)
a) Tìm đa thức M(x) = P(x) + Q(x) và N(x) = P(x) - Q(x)
b)Tìm nghiệm của đa thức M(x) + 2
a, Ta có : \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=5x^3-4x+7-5x^3-x^2+4x-5\)
\(=-x^2+2\)
\(N\left(x\right)=P\left(x\right)-Q\left(x\right)=5x^3-4x+7+5x^3+x^2-4x+5\)
\(=10x^3+x^2-8x+12\)
b, Đặt \(M\left(x\right)+2=0\Rightarrow-x^2+2+2=0\Leftrightarrow4-x^2=0\)
\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
Vậy tập nghiệm đa thức trên là S = { -2 ; 2 }