\(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ab}\)
Rút gọn biểu thức
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Rút gọn biểu thức
(a-b+c)^2-(b-c)^2+2ab-2ac
(a-b+c)^2 - (b-c)^2
có dạng a^2 - b^2 = (a+b)(a-b)
[(a-b+c)+(b-c)][(a-b+c)-(b-c)]
= (a-b+b+c-c)(a-2b+2c)
= a*(a-2b+2c)
= a^2 - 2ab + 2ac
suy ra:
(a-b+c)^2-(b-c)^2+2ab-2ac
= (a^2 - 2ab + 2ac) +2ab-2ac
= a^2
đáp án: a^2
kết quả đúng nhưng chưa chắc cách làm đã đúng nha
Rút gọn các biểu thức sau
b, \(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
\(\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
\(=a^2-2a\left(b-c\right)+\left(b-c\right)^2-\left(b-c\right)^2+2a\left(b-c\right)\)
\(=a^2-2a\left(b-c\right)+2a\left(b-c\right)\)
\(=a^2\)
Rút gọn biểu thức
a)x^2(x+4)(x-4)-(x^2+1)(x^2-1)
b) (a-b+c)^2-(a-c)^2-2ac+2ab
`a)x^2(x+4)(x-4)-(x^2+1)(x^2-1)`
`=x^2(x^2-16)-(x^2+1)(x^2-1)`
`=x^4-16x^2-(x^4-1)`
`=-16x^2+1`
`b) (a-b+c)^2-(a-c)^2-2ac+2ab`
`=a^2+b^2+c^2-2ab-2bc+2ac-(a^2-2ac+c^2)-2ac+2ab`
`=a^2+b^2+c^2-2ab-2bc+2ac-a^2+2ac-c^2-2ac+2ab`
`=b^2-2bc+2ac`
a) Ta có: \(x^2\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x^2\left(x^2-16\right)-\left(x^4-1\right)\)
\(=x^4-16x^2-x^4+1\)
\(=-16x^2+1\)
b) Ta có: \(\left(a-b+c\right)^2-\left(a-c\right)^2-2ac+2ab\)
\(=\left(a-b+b-a+c\right)\left(a-b+c+a-c\right)-2ac+2ab\)
\(=c\left(2a-b\right)-2ac+2ab\)
\(=2ac-2bc-2ac+2ab\)
\(=2ab-2bc\)
Rút gọn phân thức sau\(\frac{a^2+b^2-c^2+2ab}{a^2+b^2+c^2+2ac}\)
\(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\)
\(=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}\)
\(=\frac{\left(a+b-c\right)\left(a+b+c\right)}{\left(a+c-b\right)\left(a+c+b\right)}\)
\(=\frac{a+b-c}{a+c-b}\)
Bạn sai đề nên mik sửa và làm luôn nha
\(a^2+b^2-c^2+2ab\)
______________________
\(a^2+b^2+c^2+2ac\)
= \(a^2+b^2-c^2+2ab\) (Ở đây ta gạch a2,b2,c2,2a)
_____________________________
\(a^2+b^2+c^2+2ac\) (Ở đây ta cũng gạch a2,b2,c2,2a)
=> Kết quả cuối của biểu thức là: \(\frac{b}{c}\)
Tíck cho mình nha
\(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\)
rút gọn phân thức
\(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\)
\(=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}\)
\(=\frac{\left(a+b-c\right)\left(a+b+c\right)}{\left(a+c-b\right)\left(a+b+c\right)}\)
\(=\frac{a+b-c}{a+c-b}\left(a+b+c\ne0\right)\)
cho \(c^2+2ab-2ac-2bc\)
rút gọn biểu thức \(P=\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\)
cho a,b,c đôi một khác nhau và thỏa điều kiện \(\left(a+b+c\right)^2=a^2+b^2+c^2\)
rút gọn biểu thức:\(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
Ta có : \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)
\(\Leftrightarrow2\left(ab+ac+bc\right)=0\Rightarrow ab+ac+bc=0\Rightarrow\hept{\begin{cases}ab=-ac-bc\\ac=-ab-bc\\bc=-ac-ab\end{cases}}\)
Nên \(\frac{a^2}{a^2+2bc}=\frac{a^2+ab+bc+ac}{a^2+bc-ac-ab}=\frac{\left(a+c\right)\left(a+b\right)}{\left(a-c\right)\left(a-b\right)}\)
\(\frac{b^2}{b^2+2ac}=\frac{b^2+ab+bc+ac}{b^2+ac-ab-bc}=\frac{\left(a+b\right)\left(b+c\right)}{\left(b-a\right)\left(b-c\right)}\)
\(\frac{c^2}{b^2+2ab}=\frac{c^2+ab+ac+bc}{b^2+ab-ac-bc}=\frac{\left(c+b\right)\left(c+a\right)}{\left(c-b\right)\left(c-a\right)}\)
\(P=\frac{\left(a+b\right)\left(a+c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(a+b\right)\left(b+c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{\left(c+b\right)\left(c+a\right)}{\left(c-b\right)\left(c-a\right)}\)
\(=\frac{\left(a+b\right)\left(a+c\right)\left(b-c\right)+\left(a+b\right)\left(b+c\right)\left(c-a\right)+\left(c+b\right)\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a+b\right)\left[\left(a+c\right)\left(b-c\right)+\left(b+c\right)\left(c-a\right)\right]+\left(c+b\right)\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a+b\right)\left(2bc-2ac\right)+\left(c+b\right)\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{-2c\left(a+b\right)\left(a-b\right)+\left(c+b\right)\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a-b\right)\left[-2c\left(a+b\right)+\left(b+c\right)\left(c+a\right)\right]}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a-b\right)\left(-a^2+ab+c^2-bc\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)
Vậy \(P=1\)
cuối cùng P bằng 1 yên tâm mình tính rùi
Cho a,b,c khác nhau đôi một và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Rút gọn các biểu thức sau:
a)\(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
b)\(N=\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
c)\(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
khó quá xin lỗi nha em mới hok lớp 7
Câu này lớp 7 tớ có làm. Cũng như cái mà gọi là áp dụng t/c dãy tỉ số bằng nhau và tỉ lệ thức. mình tính ra dc a, b. c rồi.
Cho 3 số a,b,c, đôi một khác nhau và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\).Rút gọn các biểu thức sau
a) \(N=\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
b) \(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
GIÚP MIK VỚI MIK ĐANG CẦN GẤP!
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
=> \(\frac{ab+bc+ac}{abc}=0\)
=> \(ab+bc+ac=0\)
=> \(\hept{\begin{cases}ab=-bc-ac\\bc=-ab-ac\\ac=-ab-bc\end{cases}}\)
a) \(N=\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
\(=\frac{bc}{a^2-ab-ac+bc}+\frac{ca}{b^2-ab-bc+ac}+\frac{ab}{c^2-ac-bc+ab}\)
\(=\frac{bc}{a\left(a-b\right)-c\left(a-b\right)}+\frac{ca}{b\left(b-a\right)-c\left(b-a\right)}+\frac{ab}{c\left(c-a\right)-b\left(c-a\right)}\)
\(=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ca}{\left(b-a\right)\left(b-c\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{bc}{\left(a-b\right)\left(a-c\right)}-\frac{ca}{\left(a-b\right)\left(b-c\right)}+\frac{ab}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{bc\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}-\frac{ca\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{b^2c-bc^2}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}-\frac{ca^2-c^2a}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{b^2c-bc^2-ca^2+c^2a+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{\left(c^2a-bc^2\right)-\left(ca^2-b^2c\right)+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{\left(a-b\right)\left(c^2-ac-bc+ab\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{\left(a-b\right)\left[\left(ab-bc\right)-\left(ac-c^2\right)\right]}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)
b) \(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
\(=\frac{a^2}{a^2-ab-ac+bc}+\frac{b^2}{b^2-ab-bc+ac}+\frac{c^2}{c^2-bc-ac+ab}\)
\(=\frac{a^2}{a\left(a-b\right)-c\left(a-b\right)}+\frac{b^2}{b\left(b-a\right)-c\left(b-a\right)}+\frac{c^2}{c\left(c-b\right)-a\left(c-b\right)}\)
\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)
\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(a-b\right)\left(b-c\right)}+\frac{c^2}{\left(b-c\right)\left(a-c\right)}\)
\(=\frac{a^2\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}-\frac{b^2\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{a^2b-a^2c}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}-\frac{b^2a-b^2c}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{a^2b-a^2c-b^2a+b^2c+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{\left(a-b\right)\left(ab-ac-bc+c^2\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)