Cho mình hỏi
\(\dfrac{a}{\dfrac{b}{c}}=a.\dfrac{c}{b}hay=\dfrac{a}{b}.\dfrac{1}{c}\)
tớ cần hỏi bài tập toán như sau:
cho a+b+c = 2023 và \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=\dfrac{1}{2023}\)
tính giá trị biểu thức: Q = \(\dfrac{c}{a+b}+\dfrac{b}{a+c}+\dfrac{a}{b+c}\)
Các bạn cho mình hỏi !
Tròng tam giác đồng dạng nó có tính chất : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\) và \(\dfrac{a}{b+a}=\dfrac{c}{c+d}\)
Thì cái này chứng mình thế nào để ra được như vậy ạ
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}+1=\dfrac{c}{d}+1\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{b}{a}=\dfrac{d}{c}\Rightarrow\dfrac{b}{a}+1=\dfrac{d}{c}+1\Rightarrow\dfrac{b+a}{a}=\dfrac{c+d}{c}\Rightarrow\dfrac{a}{b+a}=\dfrac{c}{c+d}\)
Cho a,b,c là độ dài 3 cạnh của một tam giác. Chứng minh \(\dfrac{1}{a+b-c}\)+\(\dfrac{1}{b+c-a}\)+\(\dfrac{1}{c+a-b}\)≥\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)
Mọi người giúp mình nhé
\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}=\dfrac{2}{b}\)
Tương tự:
\(\dfrac{1}{a+b-c}+\dfrac{1}{c+a-b}\ge\dfrac{2}{a}\) ; \(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{2}{c}\)
Cộng vế:
\(2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\right)\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)
\(\Rightarrow\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a+b+c=abc
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)
Không tính a;b;c hay tinh \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2c+2a+2b}{abc}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2\left(a+b+c\right)}{abc}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
Vậy...
Cho a, b , c là những số hữu tỉ khác 0 và a= b+c
CMR: \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là 1 số hữu tỉ
Các bạn chỉ mình cách giải này với mình chưa hiểu:
Ta có: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+2\left(\dfrac{1}{ab}+\dfrac{1}{ac}-\dfrac{1}{bc}\right)\)
+ Bước này Các bạn chỉ mình vế bên phải làm sao biến đổi ra được vậy?
\(=\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+2.\left(\dfrac{c+b-a}{abc}\right)=\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2\)
+ Bước này các bạn chỉ mình chỗ \(2\left(\dfrac{c+b-a}{abc}\right)\)
+ Và tại sao vế bên trái dấu bằng thứ 2 cái này cộng vào lại ra (1/a -1 /b -1/c ) ^2 vậy?
Hằng đẳng thức:
\(\left(x-y-z\right)^2=x^2+y^2+z^2+2\left(yz-xy-zx\right)=x^2+y^2+z^2-2\left(xy+xz-yz\right)\)
\(\Rightarrow x^2+y^2+z^2=\left(x-y-z\right)^2+2\left(xy+xz-yz\right)\)
Giờ thay \(x=\dfrac{1}{a}\) ; \(y=\dfrac{1}{b}\); \(z=\dfrac{1}{c}\) là ra cái người ta làm
cho đẳng thức a.d=b.c tỉ lệ thức nào sau đây sai ( a, b , c , d khác 0 ) :
A \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) B \(\dfrac{d}{b}\) = \(\dfrac{c}{a}\) C \(\dfrac{b}{d}\) = \(\dfrac{c}{a}\) D \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
giúp mình đi nha mn =(
C. \(\dfrac{b}{d}=\dfrac{c}{a}\)
Chúc bạn học tốt!!
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) chứng mình rằng \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\) (đpcm)
Cho a+b+c+d=2000 và \(\dfrac{1}{a+b+c}+\dfrac{1}{b+c+d}+\dfrac{1}{c+d+a}+\dfrac{1}{d+a+b}=\dfrac{1}{40}\)
Tính S=\(\dfrac{a}{b+c+d}+\dfrac{b}{c+d+a}+\dfrac{c}{d+a+b}+\dfrac{d}{a+b+c}\)