Những câu hỏi liên quan
DN
Xem chi tiết
LQ
Xem chi tiết
OO
14 tháng 1 2017 lúc 17:33

Gọi d = ƯC (21n + 3; 6n + 4) (d là số nguyên tố vì nếu tử và mẫu có chung ước thì sẽ có chung các uơcs nguyên tố )

=> 21n + 3 chia hết cho d; 6n + 4 chia hết cho d

=> 7. (6n +4) - 2.(21n +3) chia hết cho d

Hay 22 chia hết cho d; d nguyên tố nên d = 2 hoặc 11

+) d = 2 => 21n + 3 chia hết cho 2 và 6n + 4 chia hết cho 2 (luôn đúng)

Chỉ cần 21n +3 chia hết cho 2 => n lẻ

+) d = 11 : để 21n + 3 chia hết cho 11

=> 22n - - n + 3 chia hết cho 11

=> n - 3 chia hết cho 11 => n = 3 + 11k => 6n + 4 = 6(3 + 11k) + 4 = 66k + 22 chia hết cho 11

Vậy n = 3 + 11k hoặc n lẻ thì A rút gọn được

Bình luận (0)
NT
Xem chi tiết
PL
25 tháng 1 2017 lúc 9:57

goi d la uoc chung nguyen to bat ky cua 21n+3 va 6n+4

=) 21n+3 chia het cho d va 6n+4 chia het cho d

Vi 21n+3 chia het cho 

=)42n+6 chia het cho d

VI 6n+4 chia het cho d nen 42n+28 chia het cho d

=)(42n+28)-(42n+6) chia het cho d

=)22 chia het cho d 

ma d nto=)d=11

=)21n+3 chia het cho 11

ma 66 chia het cho 11

=) 21n+3-66 chia het cho11

=)21n-63 chia het cho 11

=)21.(n-3) chia het cho 11

ma ucln(21,11)=1

=) n-3 chia het cho 11

Sau do ban tu lam tiep theo mo hinh va thu lai nhe!

Bình luận (0)
NM
18 tháng 2 2022 lúc 20:32

hehe boi

Bình luận (0)
 Khách vãng lai đã xóa
H24
9 tháng 2 2023 lúc 19:59

hay day

Bình luận (0)
LG
Xem chi tiết
VA
2 tháng 2 2021 lúc 14:53

viết đề lại rõ đi bạn

Bình luận (0)
 Khách vãng lai đã xóa
RT
11 tháng 7 2021 lúc 9:49

Giải . Giả sử , tử và mẫu của phân số cùng chia hết cho số nguyên tố d => 7 ( 6n + 4 ) - 2 ( 21n + 3 ) chia hễt cho d => 22 chia hết cho số nguyên tố d => d € { 2 ; 11 } .

Như vậy nếu phân số A rút gọn được cho số nguyên tố d thì d = 2 hoặc d = 11 .

Trường hợp phân số rút gọn cho 2 : Ta luôn luôn có 6n + 4 chia hết cho 2 , còn 21n + 3 chia hết cho 2 nếu n lẻ .

Trường hợp phân số rút gọn cho 11 : Ta có 21n + 3 chia hết cho 11 => 22n - n + 3 chia hễt cho 11 . Đảo lại với n = 11k + 3 ( k € N ) thì 21n + 3 và 6n + 4 chia hết cho 11

Bình luận (0)
AB
Xem chi tiết
H24
28 tháng 1 2022 lúc 9:53

Tham khảo

undefinednhớ tick nha bbi

Bình luận (0)
VH
28 tháng 1 2022 lúc 9:56

undefinedtk

 

Bình luận (0)
KJ
28 tháng 1 2022 lúc 10:07

Gọi ƯC(21n+3; 6n+4) = d; \(\dfrac{21n+3}{6n+4}\) = A ⇒ 21n+3 ⋮ d; 6n+4 ⋮ d

⇒ (6n+4) - (21n+3) ⋮ d

⇒ 7(6n+4) - 2(21n+3) ⋮ d

⇒ 42n + 28 - 42n - 6 ⋮ d

⇒ 22 ⋮ cho số nguyên tố d

d ∈ {11; 2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d = 2 hoặc d = 11.

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2.(21n+3) chia hết cho 2 nếu n là số lẻ.

Nếu A có thể rút gọn cho 11 thì 21n+3 ⋮ 11 ⇒ 22n - n + 3 ⋮ 11 ⇒ n - 3 ⋮ 11. Đảo lại với n = 11k+3 thì 21n + 3 và 6n+4 chia hết cho 11.

Vậy với n là số lẻ hoặc n là số chẵn mà n = 11k+3 thì phân số đó rút gọn được.

 

 

Bình luận (0)
QD
Xem chi tiết
VC
26 tháng 7 2017 lúc 16:07

đặt ước chung lớn nhất ấy

Bình luận (0)
00
4 tháng 8 2017 lúc 21:35

Giải . Giả sử , tử và mẫu của phân số cùng chia hết cho số nguyên tố d => 7 ( 6n + 4 ) - 2 ( 21n + 3 ) chia hễt cho d => 22 chia hết cho số nguyên tố d => d € { 2 ; 11 } .

Như vậy nếu phân số A rút gọn được cho số nguyên tố d thì d = 2 hoặc d = 11 .

Trường hợp phân số rút gọn cho 2 : Ta luôn luôn có 6n + 4 chia hết cho 2 , còn 21n + 3 chia hết cho 2 nếu n lẻ .

Trường hợp phân số rút gọn cho 11 : Ta có 21n + 3 chia hết cho 11 => 22n - n + 3 chia hễt cho 11 . Đảo lại với n = 11k + 3 ( k € N ) thì 21n + 3 và 6n + 4 chia hết cho 11 .

Vậy với n lẻ hoặc n chẵn mà n = 11k + 3 thì phân số A rút gọn được .

Chú ý rằng n chẵn khi và chỉ khi k lẻ ( k = 2m + 1 ) nên kết quả trên có thể viết là n = 2m + 1 hoặc n = 2 ( 11m + 7 ) với m € N .

Bình luận (0)
PA
11 tháng 5 2020 lúc 18:47

Gọi dd là ước nguyên tố của 21n+321n+3 và 6n+46n+4.

Suy ra ⎧⎨⎩21n+3⋮d6n+4⋮d⇒⎧⎨⎩2.(21n+3)⋮d7.(6n+4)⋮d{21n+3⋮d6n+4⋮d⇒{2.(21n+3)⋮d7.(6n+4)⋮d⇒⎧⎨⎩42n+6⋮d42n+28⋮d⇒{42n+6⋮d42n+28⋮d

⇒(42n+28)−(42n+6)⋮d⇒(42n+28)−(42n+6)⋮d

⇒42n+28−42n−6⋮d⇒42n+28−42n−6⋮d

⇒22⋮d⇒22⋮d

Vì dd là số nguyên tố nên d∈{2;11}d∈{2;11}.

+) Với d=2⇒⎧⎨⎩21n+3⋮26n+4⋮2⇒⎧⎨⎩3.(7n+1)⋮22.(3n+2)⋮2d=2⇒{21n+3⋮26n+4⋮2⇒{3.(7n+1)⋮22.(3n+2)⋮2

Vì 2.(3n+2)⋮22.(3n+2)⋮2 (luôn đúng) ⇒3.(7n+1)⋮2⇒3.(7n+1)⋮2.

Mà 33 không chia hết cho 22 suy ra (7n+1)⋮2(7n+1)⋮2

⇒⎧⎨⎩7n+1⋮26⋮2⇒7n+1+6⋮2⇒7n+7⋮2⇒7(n+1)⋮2⇒{7n+1⋮26⋮2⇒7n+1+6⋮2⇒7n+7⋮2⇒7(n+1)⋮2

Vì 77 không chia hết cho 2⇒n+1⋮2⇒n=2m−1(m∈N∗)2⇒n+1⋮2⇒n=2m−1(m∈N∗).

+) Với d=11⇒⎧⎨⎩21n+3⋮116n+4⋮11d=11⇒{21n+3⋮116n+4⋮11

Ta có: 21n+3⋮1121n+3⋮11 ⇒22n−n+3⋮11⇒22n−n+3⋮11⇒22n−(n−3)⋮11⇒22n−(n−3)⋮11

Mà 22n⋮1122n⋮11 nên (n−3)⋮11⇒n−3=11k⇒n=11k+3(k∈N)(n−3)⋮11⇒n−3=11k⇒n=11k+3(k∈N)

Với n=11k+3⇒6n+4=6(11k+3)+4n=11k+3⇒6n+4=6(11k+3)+4 =66k+22=11(6k+3)⋮11(tm)=66k+22=11(6k+3)⋮11(tm)

Vậy với n=2m+1n=2m+1 hoặc n=11k+3(m∈N∗,k∈N)n=11k+3(m∈N∗,k∈N) thì phân số A=21n+36n+4A=21n+36n+4 rút gọn được.

Bình luận (0)
 Khách vãng lai đã xóa
BS
Xem chi tiết
DA
26 tháng 4 2020 lúc 18:39

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

Bình luận (0)
 Khách vãng lai đã xóa
BH
Xem chi tiết
LS
Xem chi tiết
LS
11 tháng 7 2021 lúc 9:28

help me!! PLEASE 😫😫😫

Bình luận (0)
RT
11 tháng 7 2021 lúc 9:41

ok b

Bình luận (0)
RT
11 tháng 7 2021 lúc 9:41

đợi mk 10 phút

Bình luận (0)