Những câu hỏi liên quan
H24
Xem chi tiết
LH
Xem chi tiết
H24
28 tháng 7 2017 lúc 15:06

a) Ta có : x2 - 20x + 101 

= x2 - 20x + 100 + 1

= (x - 10)+ 1

Mà (x - 10)2 lớn hơn hoặc bằng 0 

Nên  (x - 10)+ 1 lớn hơn hoặc bằng 1

=> GTNN của biểu thức là 1 . khi x = 10

Bình luận (0)
NS
29 tháng 8 2020 lúc 13:23

b) 4a2+4a+2

=(2a)2+2.2a+1+1

=(2a+1)2+1

Vì (2a+1)2  \(\ge\)0 với mọi x \(\in\)R

=>(2a+1)2+1\(\ge\)1 với mọi x \(\in\)R

dấu "=" xảy ra <=> 2a+1=0  <=> 2a=-1 <=> a= -1/2

Bình luận (0)
 Khách vãng lai đã xóa
NS
29 tháng 8 2020 lúc 13:28

câu c bạn tham khảo tại link sau nhé ! 

https://h oc 24.vn/hoi-dap/question/394806.html

Bình luận (0)
 Khách vãng lai đã xóa
CC
Xem chi tiết
NH
Xem chi tiết
PN
8 tháng 7 2018 lúc 10:46

a) \(A=x^2-20x+101\)

\(=x^2-2.x.10+10^2+1\)

\(=\left(x-10\right)^2+1\ge1\forall x\)

Dấu = xảy ra khi \(\left(x-10\right)^2=0\)

=> \(x-10=0\)

=> \(x=10\)

Vậy A min = 1 tại x = 10

b) \(B=4a^2+4a+2\)

\(=\left(2a\right)^2+2.2a.1+1^2+1\)

\(=\left(2a+1\right)^2+1\ge1\forall x\)

Dấu = xảy ra khi \(\left(2x+1\right)^2=0\)

=> \(2x+1=0\)

=> \(2x=-1\)

=> \(x=\frac{-1}{2}\)

Vậy B min = 1 tại \(x=\frac{1}{2}\)

c) Mình không biết làm mong bạn thông cảm

d)\(D=x^2+2y^2-2xy-4y+5\)

\(=x^2-2xy+y^2+y^2-2.y.2+2^2+1\)

\(=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\forall x\)

Dấu = xảy ra khi \(\hept{\begin{cases}\left(y-2\right)^2=0\\\left(x-y\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}y-2=0\\x-y=0\end{cases}}\Rightarrow\hept{\begin{cases}y=2\\x-2=0\end{cases}}\hept{\begin{cases}y=2\\x=2\end{cases}}\)

Vậy D min = 1 tại x = y = 2

Bình luận (0)
NN
Xem chi tiết
TP
15 tháng 8 2019 lúc 14:57

\(A=x^2-20x+101\)

\(A=x^2-2\cdot x\cdot10+100+1\)

\(A=\left(x-10\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=10\)

___

\(B=4a^2+4a+2\)

\(B=4a^2+4a+1+1\)

\(B=\left(2a+1\right)^2+1\ge1\forall a\)

Dấu "=" xảy ra \(\Leftrightarrow a=\frac{-1}{2}\)

___

\(C=x^2-4xy+5y^2+10x-22y+28\)

\(C=x^2-4xy+4y^2+y^2+10x-22y+28\)

\(C=\left(x-2y\right)^2+2\cdot\left(x-2y\right)\cdot5+25+y^2-2y+1+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

___

\(D=4x-x^2+3\)

\(D=-\left(x^2-4x-3\right)\)

\(D=-\left(x^2-4x+4-7\right)\)

\(D=-\left[\left(x-2\right)^2-7\right]\)

\(D=7-\left(x-2\right)^2\le7\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=2\)

___

\(E=x-x^2\)

\(E=-\left(x^2-x\right)\)

\(E=-\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)\)

\(E=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)

\(E=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

Bình luận (0)
H24
15 tháng 8 2019 lúc 14:56

a, \(A=x^2-20x+101=x^2-2.x.10+10^2+1\)

\(=\left(x-10\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-10\right)^2=0\)

\(\Leftrightarrow x-10=0\)

\(\Leftrightarrow x=10\)

Vậy : \(A_{min}=1\Leftrightarrow x=10\)

b) \(B=4a^2+4a+2=\left(2a\right)^2+2.2a.1+1^2+1\)

\(=\left(2a+1\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2a+1\right)^2=0\)

\(\Leftrightarrow2a+1=0\)

\(\Leftrightarrow2a=-1\)

\(\Leftrightarrow a=-\frac{1}{2}\)

Vậy : \(B_{min}=1\Leftrightarrow x=-\frac{1}{2}\)

Bình luận (0)
H24
Xem chi tiết
DH
2 tháng 8 2018 lúc 15:29

a) \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\)

Vì \(\left(x-10\right)^2\ge0\left(\forall x\right)\)

\(\Rightarrow\left(x-10\right)^2+1\ge1\)

Vậy GTNN của biểu thức bằng 1 khi và chỉ khi x-10=0 <=> x=10

b) \(4a^2+4a+2=\left(2a+1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> (2a+1)2 = 0 <=> 2a+1 = 0 <=> a = -1/2

Vậy GTNN của biểu thức bằng 1 khi và chỉ khi a = -1/2

d) \(9x^2-6x+5=\left(3x-1\right)^2+4\ge4\)

Dấu "=" xảy ra <=> (3x-1)2 = 0 <=> 3x-1= 0 <=> x = 1/3

Vậy GTNN của biểu thức bằng 4 khi và chỉ khi x = 1/3

Bình luận (0)
H24
2 tháng 8 2018 lúc 15:29

a) x2-2.10x+102+1

=(x-10)2+1

Bình luận (0)
H24
2 tháng 8 2018 lúc 15:37

a) Đặt  \(A=x^2-20x+101\)

\(A=\left(x^2-20x+100\right)+1\)

\(A=\left(x-10\right)^2+1\)

Do  \(\left(x-10\right)^2\ge0\forall x\)

\(\Rightarrow A\ge1\)

Dấu "=" xảy ra khi :  \(x-10=0\Leftrightarrow x=10\)

Vậy ...

b)  Đặt \(B=4a^2+4a+2\)

\(B=\left(4a^2+4a+1\right)+1\)

\(B=\left(2a+1\right)^2+1\)

Do  \(\left(2a+1\right)^2\ge0\forall a\)

\(\Rightarrow B\ge1\)

Dấu "=" xảy r khi "  \(2a+1=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy ...

c) Đặt  \(C=x^2-4xy+5y^2+10x-22y+28\)

\(C=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)

\(C=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]\)\(+\left(y^2-2y+1\right)+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

Do  \(\left(x-2y+5\right)^2\ge0\forall x;y\)

      \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow C\ge2\)

Dấu "=" xảy ra khi : 

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy ...

d) Đặt  \(D=9x^2-6x+5\)

\(D=\left(9x^2-6x+1\right)+4\)

\(D=\left(3x-1\right)^2+4\)

Do  \(\left(3x-1\right)^2\ge0\forall x\)

\(\Rightarrow D\ge4\)

Dấu "=" xảy ra khi :  \(3x-1=0\Leftrightarrow x=\frac{1}{2}\)

Vậy ...

Bình luận (0)
HT
Xem chi tiết
KT
22 tháng 12 2017 lúc 19:59

C = x2 - 4xy + 5y2 + 10x - 22y + 28

= (x2 - 4xy + 4y2) + (10x - 22y) +  25 + y+ 3

= (x - 2y)2 + 10(x - 2y) + 25 + y2 + 3

= (x - 2y + 5)2 + y2 + 3 \(\ge\)3

Dấu  " = "  xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x-2y+5=0\\y=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=5\\y=0\end{cases}}\)

Vậy Min  C = 3  \(\Leftrightarrow\)x = 5;  y = 0

Bình luận (0)
CP
Xem chi tiết
NL
19 tháng 9 2021 lúc 16:29

\(A=\left(x^2+4x+4\right)+3=\left(x+2\right)^2+3\ge3\)

\(A_{min}=3\) khi \(x=-2\)

\(B=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)

\(B_{min}=1\) khi \(x=10\)

\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(C_{min}=2\) khi \(\left(x;y\right)=\left(-3;1\right)\)

Bình luận (0)
TL
Xem chi tiết