Tính
\(\frac{4^{20}-2^{10}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
tính:
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
Tính hợp lí:
A=\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
\(A=\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
\(A=\frac{2^{20}.2^{20}-2^{20}+3^{20}.2^{20}}{2^{20}.3^{20}-3^{20}+3^{20}.3^{20}}\)
\(A=\frac{\left(2^{20}-1+3^{20}\right).2^{20}}{\left(2^{20}-1+3^{20}\right).3^{20}}\)
\(\Rightarrow A=\frac{2^{20}}{3^{20}}\)
\(\left(\frac{1}{4}\right)^{44}:\left(\frac{1}{2}\right)^{12}\)
\(\left(\frac{3^{17}-81^{11}}{37^{10}.9^{17}}\right)\)
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
Thực hiện phép tính (tính nhanh nếu có thể)
\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
\(=\frac{\left(2^{20}-1^{20}+3^{20}\right)\cdot2^{20}}{\left(2^{20}-1^{20}+3^{20}\right)\cdot3^{20}}\left(\text{Mình làm hơi tắt, xin bạn thông cảm}\right)\)
\(=\frac{2^{20}}{3^{20}}=\left(\frac{2}{3}\right)^{20}\)
Uk mk nhận nha
\(M=\frac{\text{2 . 6 . 10 + 4 . 12 . 20 + 6 . 18 . 30 + ..... + 20 . 60 . 100}}{\text{1 . 2 . 3 + 2 . 4 . 6 + 3 . 6 . 9 + ..... + 10 . 20 . 30}}\)
Rút gọn biểu thức trên nha.
\(M=\frac{2.6.10+4.12.20+...+20.60.100}{1.2.3+2.4.6+...+10.20.30}=\frac{2.6.10.1^3+2.6.10.2^3+...+2.6.10.10^3}{1.2.3.1^3+1.2.3.2^3+...+1.2.3.10^3}\)
\(=\frac{2.6.10.\left(1^3+2^3+...+10^3\right)}{1.2.3.\left(1^3+2^3+...+10^3\right)}=\frac{2.6.10}{1.2.3}=20\)
vậy M=20
a)\(\frac{45^{10}.5^{10}}{75^{10}}\)
b)\(\frac{8^{10}+4^{10}}{8^4+4^{11}}\)
c)\(\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}\)
d) \(\frac{14^{16}.21^{32}.45^{48}}{10^{16}.15^{32}.7^{96}}\)
Tính 420-210+620/620-320+920
Rút gọn phân số sau:
\(M=\frac{\text{2 . 6 . 10 + 4 . 12 . 20 + 6 . 18 . 30 + ..... + 20 . 60 . 100 }}{\text{1 . 2 . 3 + 2 . 4 . 6 + 3 . 6 . 9 + ..... + 10 . 20 . 30}}\)
\(M=\frac{2.6.10+4.12.20+6.18.30+...+20.60.100}{1.2.3+2.4.6+3.6.9+...+10.20.30}\)
\(=\frac{2.6.10.\left(1+2+3+...+10\right)}{1.2.3.\left(1+2+3+...+10\right)}\)
\(=20\)
\(\frac{4^{20}-2^{20}-6^{20}}{6^{20}-3^{20}+9^{20}}\)
\(\frac{4^{20}-2^{20}-6^{20}}{6^{20}-3^{20}-9^{20}}=\frac{2^{20}.2^{20}-2^{20}-2^{20}.3^{20}}{3^{20}.2^{20}-3^{20}-3^{20}.3^{20}}\)
\(=\frac{2^{20}\left(2^{20}-1-3^{20}\right)}{3^{20}\left(2^{20}-1-3^{20}\right)}=\frac{2^{20}}{3^{20}}\)