Những câu hỏi liên quan
TP
Xem chi tiết
XM
17 tháng 4 2022 lúc 14:47

undefined

Bình luận (0)
MN
Xem chi tiết
H24
11 tháng 1 2023 lúc 22:10

1A(adj)

2D(n)

3A(adj)

4C(n)

5D(adj)

6C(adj)

7B(n)(Tham khảo c7)

8A(n)

9C(n)

10B(v)

11A(adv)

Bình luận (2)
TD
Xem chi tiết
H24
Xem chi tiết
NT
7 tháng 10 2021 lúc 23:16

Câu 16: A

Câu 14: C

Câu 12: A

Bình luận (0)
Xem chi tiết
NA
8 tháng 2 2018 lúc 21:35

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

Bình luận (0)
TL
18 tháng 6 2021 lúc 21:11

okeee nha

Bình luận (0)
 Khách vãng lai đã xóa
0H
Xem chi tiết
H24
Xem chi tiết
LH
23 tháng 8 2021 lúc 22:36

bất đẳng thức cosi là khái niệm dùng để chỉ bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Trong đó, trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng

Bình luận (0)
LH
23 tháng 8 2021 lúc 22:37

Hệ quả 1: Nếu tổng hai số dương không đổi thì tích của chúng lớn nhất khi hai số đó bằng nhau                                                                     Hệ quả 2: Nếu tích hai số dương không đổi thì tổng của hai số này nhỏ nhất khi hai số đó bằng nhau

Bình luận (0)
LH
23 tháng 8 2021 lúc 22:46

a) \left( \frac{a}{b}+\frac{b}{a} \right)\left( \frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}} \right)\ge 4

Áp dụng bđt côsi ta có:

\frac{a}{b}+\frac{b}{a}\ge 2\sqrt{\frac{a}{b}.\frac{b}{a}}=2,\,\,\frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}}\ge 2\sqrt{\frac{a}{{{b}^{2}}}.\frac{b}{{{a}^{2}}}}=\frac{2}{\sqrt{ab}}

\(\Rightarrow\) \left( \frac{a}{b}+\frac{b}{a} \right)\left( \frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}} \right)\ge \frac{4}{\sqrt{ab}} (1)

\(\Leftrightarrow\) 2={{a}^{2}}+{{b}^{2}}\ge 2\sqrt{{{a}^{2}}{{b}^{2}}}=2ab\Rightarrow ab\le 1 (1)

Từ (1) và (2) \(\Rightarrow\) \left( \frac{a}{b}+\frac{b}{a} \right)\left( \frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}} \right)\ge 4 (ĐPCM)

Đẳng thức xảy ra \(\Leftrightarrow\) \displaystyle a=b=1.

Bình luận (1)
LL
Xem chi tiết
TL
15 tháng 3 2023 lúc 19:35

1. A.'tropical   B.di'saster   C.'damage   D.'chemical


2. A.pol'lution   B. contami'nation   C.des'troy   D.en'vironment

Bình luận (0)