Cho M =12.(5^2 + 1)(5^4+1)(5^8+1)(5^16+1)(5^32+1)
Và N=5^64.Tính 2.M_N
so sánh 12(5^2+1)(5^4+1)(5^8+1)(5^16+1)(5^32+1) và 5^64-1
\(12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\frac{1}{2}\left(5^{32}-1\right)\left(5^{32}+1\right)\)
\(=\frac{1}{2}\left(5^{64}-1\right)\)
Cho A=(5+1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)(5^32+1) và B=1/5(5^64-1) S^2 A và B
\(A=\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=\left(5-1\right)\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
...
\(4A=5^{64}-1\)
\(\Rightarrow A=\frac{5^{64}-1}{4}>B=\frac{5^{64}-1}{5}\)
tính nhanh p/s 1+ 5/4 + 5/8 + 5/16 + 5/32 + 5/64
b) 1/3 +1/9 + 1/27 + 1/81 +...........+ 1/59049
c) 3/2 + 3/8 + 3/32 +3/128 + 3/512
d) 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 giúp mình với
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
Bài 1: Tính tổng sau:
a) 5/2 + 5/6 + 5/18 + 5/54 + 5/162
b) 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
giải giúp mk và kb nha!!!!!!!!!!!!!
B)A*2=(1/2+1/4+....+1/256)*2
=1+1/2+1/4+....+1/128)
A*2-A=(1+1/2+1/4+...+1/128)-(1/2+1/4+...+1/256)
=1-1/256
=255/256
a) Đặt A = \(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}\)
\(\Rightarrow\frac{1}{3}\times A=\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}+\frac{5}{486}\)
Lấy \(A-\frac{1}{3}\times A\)theo vế ta có :
\(A-\frac{1}{3}\times A=\left(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}\right)-\left(\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}+\frac{5}{486}\right)\)
\(\Rightarrow\frac{2}{3}\times A=\frac{5}{2}-\frac{5}{486}\)
\(\Rightarrow\frac{2}{3}\times A=\frac{605}{243}\)
\(\Rightarrow A=\frac{605}{243}:\frac{2}{3}\)
\(\Rightarrow A=\frac{605}{162}\)
Vậy \(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}=\frac{605}{162}\)
b) Đặt B = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}+\frac{1}{256}\)
=> \(\frac{1}{2}\times B=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}+\frac{1}{512}\)
Lấy B trừ \(\frac{1}{2}\times B\)theo vế ta có :
\(B-\frac{1}{2}\times B=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...++\frac{1}{128}+\frac{1}{256}\right)-\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{512}\right)\)
\(\Rightarrow\frac{1}{2}\times B=\frac{1}{2}-\frac{1}{512}\)
\(\Rightarrow\frac{1}{2}\times B=\frac{255}{512}\)
\(\Rightarrow B=\frac{255}{512}:\frac{1}{2}\)
\(\Rightarrow B=\frac{255}{256}\)
Vậy \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}=\frac{255}{256}\)
a,2/9-5/7+20/33+8/21+5/18-6/22
b, 1/2+1/3-1/4+1/6+1/8+1/16+1/32+1/64+1/128
c,5-1/2-5/6-11/12-19/20-29/30
các bn giúp mk nha
4/5 : ( 4/5 . -5/4) : ( 16/25 - 1/5 )
11/12 : ( 7/9 + -1/3 ) - ( 2/3 - 5/15 )
-2/5 . ( 9/8 + 16/32 -3/4 ) - 9/10
( 4/3 + 8/3 ) . ( 7/4 - 6/4 ) : ( 6/5 + 12/5 + 1/5 )
cách giải bài này như nào: 5/20+1/4+6/24+8/32=bao nhiêu
\(\dfrac{4}{5}\) : (\(\dfrac{4}{5}\) .- \(\dfrac{5}{4}\)) : (\(\dfrac{16}{25}\) - \(\dfrac{1}{5}\))
= \(\dfrac{4}{5}\) : (-1) : (\(\dfrac{16}{25}\) - \(\dfrac{5}{25}\))
= -\(\dfrac{4}{5}\) : \(\dfrac{11}{25}\)
= - \(\dfrac{4}{5}\) x \(\dfrac{25}{11}\)
= - \(\dfrac{20}{11}\)
\(\dfrac{11}{12}\) : (\(\dfrac{7}{9}\) + \(\dfrac{-1}{3}\)) - (\(\dfrac{2}{3}\) - \(\dfrac{5}{15}\))
= \(\dfrac{11}{12}\) : (\(\dfrac{7}{9}\) - \(\dfrac{3}{9}\)) - (\(\dfrac{2}{3}\) - \(\dfrac{1}{3}\))
= \(\dfrac{11}{12}\) : \(\dfrac{4}{9}\) - \(\dfrac{1}{3}\)
= \(\dfrac{11}{12}\) x \(\dfrac{9}{4}\) - \(\dfrac{1}{3}\)
= \(\dfrac{99}{48}\) - \(\dfrac{1}{3}\)
= \(\dfrac{99}{48}\) - \(\dfrac{16}{48}\)
= \(\dfrac{83}{48}\)
4/5 : ( 4/5 . -5/4) : ( 16/25 - 1/5 )
11/12 : ( 7/9 + -1/3 ) - ( 2/3 - 5/15 )
-2/5 . ( 9/8 + 16/32 -3/4 ) - 9/10
( 4/3 + 8/3 ) . ( 7/4 - 6/4 ) : ( 6/5 + 12/5 + 1/5 )
\(\dfrac{4}{5}\): (\(\dfrac{4}{5}\).-\(\dfrac{5}{4}\)) : (\(\dfrac{16}{25}\) - \(\dfrac{1}{5}\))
=\(\dfrac{4}{5}\) x - 1: (\(\dfrac{16}{25}\) - \(\dfrac{5}{25}\))
= - \(\dfrac{4}{5}\) : \(\dfrac{11}{25}\)
= - \(\dfrac{4}{5}\) x \(\dfrac{25}{11}\)
= - \(\dfrac{20}{11}\)
\(\dfrac{11}{12}\): (\(\dfrac{7}{9}\) + - \(\dfrac{1}{3}\)) - (\(\dfrac{2}{3}\) - \(\dfrac{5}{15}\))
= \(\dfrac{11}{12}\) : (\(\dfrac{7}{9}\) - \(\dfrac{3}{9}\)) - (\(\dfrac{2}{3}\) - \(\dfrac{1}{3}\))
= \(\dfrac{11}{12}\) : \(\dfrac{4}{9}\) - \(\dfrac{1}{3}\)
= \(\dfrac{11}{12}\) x \(\dfrac{9}{4}\) - \(\dfrac{1}{3}\)
= \(\dfrac{99}{48}\) - \(\dfrac{16}{48}\)
= \(\dfrac{83}{48}\)
- \(\dfrac{2}{5}\).(\(\dfrac{9}{8}\) + \(\dfrac{16}{32}\) - \(\dfrac{3}{4}\)) - \(\dfrac{9}{10}\)
= - \(\dfrac{2}{5}\).(\(\dfrac{9}{8}\) + \(\dfrac{4}{8}\) - \(\dfrac{6}{8}\)) - \(\dfrac{9}{10}\)
= - \(\dfrac{2}{5}\).(\(\dfrac{13}{8}\) - \(\dfrac{6}{8}\)) - \(\dfrac{9}{10}\)
= - \(\dfrac{2}{5}\).\(\dfrac{7}{8}\) - \(\dfrac{9}{10}\)
= - \(\dfrac{7}{20}\) - \(\dfrac{18}{20}\)
= - \(\dfrac{5}{4}\)
Tính nhanh:
a. 1+5/4+5/8+5/16+5/32+5/64
lớp 4 mà khó như lớp 5 phét vừa thôi ông nha
5 tính tổng sau bằng cách hợp lý.b,A= 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
Lời giải:
$A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}$
$2\times A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}$
$2\times A-A=(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32})-(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64})$
$A=1-\frac{1}{64}=\frac{63}{64}$
A=1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
2A = 2.(1/2+1/4+1/8+1/16+1/32+1/64)
= 1 + 1/2+1/4+1/8+1/16+1/32
=> 2A - A = (1+1/2+1/4+1/8+1/16+1/32) - (1/2+1/4+1/8+1/16+1/32+1/64)
=> A = 1 - 1/64
= 63/64