Những câu hỏi liên quan
PN
Xem chi tiết
NV
25 tháng 10 2015 lúc 21:43

Vì số bút máy 6A nhận gấp 2 số bút máy 6B nhận, nếu 6B là 1 phần thì 6A là 2 phần.
 Tổng số phần bằng nhau là:
1+2=3(phần)
Tổng số cây 5 hộp đó phải chia hết cho 3.
 31+19+18+16+15=99 chia hết cho 3.
Số bút 6B nhận được là:
99:3=33(cây)
Số bút 6A nhận được là:
33.2=66(cây)
Còn lại 20 cây là của lớp 6C.

Bình luận (0)
NV
Xem chi tiết
H24
25 tháng 10 2015 lúc 21:42

Vì số bút máy 6A nhận gấp 2 số bút máy 6B nhận, nếu 6B là 1 phần thì 6A là 2 phần.
 Tổng số phần bằng nhau là:
1+2=3(phần)
Tổng số cây 5 hộp đó phải chia hết cho 3.
 31+19+18+16+15=99 chia hết cho 3.
Số bút 6B nhận được là:
99:3=33(cây)
Số bút 6A nhận được là:
33.2=66(cây)
Còn lại 20 cây là của lớp 6C.

Bình luận (0)
UI
25 tháng 10 2015 lúc 21:44

6a 66

6b 33

6c 20

Bình luận (0)
GC
25 tháng 10 2015 lúc 21:53

6A :66 cái
6B :33 cái
6C :20 cái

Bình luận (0)
HG
Xem chi tiết
HG
Xem chi tiết
NT
4 tháng 12 2016 lúc 9:40

Bạn vào google nhấn câu đầu của bài toán này rồi sẽ có lời giải

Bình luận (2)
DH
Xem chi tiết
H24
27 tháng 6 2017 lúc 9:24

Xét tổng của 6 hộp được:

                31+20+19+18+16+15=119( hộp)

Do lớp 6A nhận gấp 2 lần số bút máy lớp 6B nhận nên số bút cả 2 lớp được nhận chia hết cho 3. Lấy 119 trừ lần lượt cho số bút mỗi

hộp đánh số từ 1-6 thì có duy nhất hộp 2 khi trừ ta được 1 số chia hết cho 3.

Do đó, Hai lớp 6A và 6B đã nhận được 5 hộp thì không có hộp số 2 có 20 cái bút.

Tổng số bút của 2 lớp nhận được là :

                119-20=99 cái bút.(1)

Mà lớp 6A nhận gấp 2 lần số bút máy lớp 6B nhận (2)

Từ (1),(2) giải bài toán tổng tỉ ra thì ta có lớp A đc: 66 cái bút. Lớp B có 33 cái.

Related image

 
Bình luận (0)
B1
26 tháng 8 2017 lúc 20:24

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

Bình luận (0)
LT
14 tháng 11 2017 lúc 12:53

Ăn chi đỏ

Bình luận (0)
NA
Xem chi tiết
H24
20 tháng 11 2017 lúc 23:33

Ta có sơ đồ:

6A: |-----|-----|

6B: |-----|

Tổng số phần bằng nhau là:

          1 + 2 = 3 phần

Tồ̉ng số cây 5 hộp đó phải chia hết cho 3.

           31 + 19 + 18 + 16 + 15 = 99 chia hết cho 3

Số bút 6B nhận được là:

           99 : 3 = 33 cây

Số bút 6A nhận được là:

           99 - 33 = 66 cây

                       Đáp số: 6A: 66 cây

                                     6B: 33 cây

Bình luận (0)
PY
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết