rút gọn M = \(\sqrt{4+\sqrt{7}}\)\(-\sqrt{4-\sqrt{7}}\)
m.n giúp mk vs nha. mai mk nộp bài r !!!
(1) rút gọn biểu thức:
a) A= \(3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)
b) B= \(\sqrt{7-4\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)
c) C= \(\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)
d) D= \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\)
giúp mk vs ạ mai mk hc rồi
a) \(\Leftrightarrow A=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}=3\sqrt{2}\)
b) \(\Leftrightarrow B=\sqrt{7-2\sqrt{12}}+\sqrt{12+2\sqrt{27}}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}=2-\sqrt{3}+3+\sqrt{3}=5\)
c) \(\Leftrightarrow C=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{6}{4}=\dfrac{3}{2}\)
d) \(\Leftrightarrow D=3-\left(-2\right)-5=0\)
1) rút gọn
A= \(3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)
B= \(\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)
C= \(\sqrt{7-4\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)
Giúp mk vs ạ mk cần gấp
\(A=3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)
\(=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}\)
\(=3\sqrt{2}\)
\(B=\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)
\(=\dfrac{3-\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}+\dfrac{3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)
\(=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{9-5}\)
\(=\dfrac{3}{2}\)
\(A=3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)
\(A=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}=3\sqrt{2}\)
\(B=\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)
\(B=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{9-5}=\dfrac{6}{4}=\dfrac{3}{2}\)
\(C=\sqrt{7-4\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)
\(C=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}\)
\(C=2-\sqrt{3}+3+\sqrt{3}=5\)
\(\dfrac{\sqrt{5}}{\sqrt{5}+3}+\dfrac{2\sqrt{5}}{\sqrt{5}-3}-2:\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{10}+1}\)
M.N GIÚP MK RÚT GỌN VS Ạ
\(=\dfrac{5-3\sqrt{5}+10+6\sqrt{5}}{\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)}-\dfrac{2\sqrt{10}+2}{\sqrt{3}-\sqrt{2}}\\ =\dfrac{15+3\sqrt{5}}{5-9}-\left(2\sqrt{10}+2\right)\left(\sqrt{3}+\sqrt{2}\right)\\ =-2\sqrt{30}-4\sqrt{5}-2\sqrt{3}-2\sqrt{2}-\dfrac{15+3\sqrt{5}}{4}\\ =\dfrac{-8\sqrt{30}-16\sqrt{5}-8\sqrt{3}-8\sqrt{2}-15-3\sqrt{5}}{4}\\ =\dfrac{-8\sqrt{30}-19\sqrt{5}-8\sqrt{3}-8\sqrt{2}-15}{4}\)
\(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)voix>0,x\ne1,kq=4a\)
đề iu cầu là rút gọn biểu thức ạ các bn giải giúp mk vs sáng mai phải nộp cô rồi ạ
\(A=\left(\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{a-1}+4\sqrt{a}\right)\left(\frac{a+1}{\sqrt{a}}\right)\)
\(A=\left(\frac{4\sqrt{a}}{a-1}+\frac{4\sqrt{a}\left(a-1\right)}{a-1}\right)\left(\frac{a+1}{\sqrt{a}}\right)\)
\(A=\frac{4a\sqrt{a}}{a-1}.\frac{a+1}{\sqrt{a}}=\frac{4a\left(a+1\right)}{a-1}\)
....... Tới đây được chưa bạn?
1) Rút gọn:
\(A=\frac{\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}}{\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}}.\sqrt{2x-1}.\)
2) Chứng minh:
\(\sqrt{\sqrt{x}+\sqrt{\frac{x^2-4}{x}}}+\sqrt{\sqrt{x}-\sqrt{\frac{x^2-4}{x}}}=\sqrt{\frac{2x+4}{\sqrt{x}}}\)
GIÚP MK GIẢI 2 BÀI NÀY NHA M.N! THANKS NHÌU! _ mk đang cần gấp lắm!!! T^T
rút gọn biểu thức sau:
\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
GIẢI NHANH MK TICK CHO NHA
\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}=\frac{\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)}{\sqrt{2}}=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)
A =\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
\(A^2=\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\)
\(A^2=\left(\sqrt{4-\sqrt{7}}\right)^2-2.\sqrt{4-\sqrt{7}}.\sqrt{4+\sqrt{7}}+\left(\sqrt{4+\sqrt{7}}\right)^2\)
\(A^2=4-\sqrt{7}-2\sqrt{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}+4+\sqrt{7}\)
\(A^2=8-2\sqrt{16-7
}\)
\(A^2=8-2\sqrt{9}=8-6=2\)
\(A=\frac{+}{ }\sqrt{2}\)
Vì là biểu thức lên phải có tên . lên mới có A @@!
có ai bt lm bài này k giúp mk vs mk đg cần rất rất gấp mong các bn giúp cho
VD3: cho biểu thức
P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right).\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)
a, rút gọn P
b, tính giá trị P biết : x=7+4\(\sqrt{3}\)
a. \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)
<=> \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
<=> \(P=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
<=> \(P=\dfrac{\sqrt{x}+2}{x-2\sqrt{x}}\)
b. Khi \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\) => \(\sqrt{x}=2+\sqrt{3}\)
=> \(P=\dfrac{2+\sqrt{3}+2}{7+4\sqrt{3}-2\left(2+\sqrt{3}\right)}=\dfrac{4+\sqrt{3}}{7+4\sqrt{3}-4-2\sqrt{3}}=\dfrac{4+\sqrt{3}}{3+2\sqrt{3}}=\dfrac{5\sqrt{3}-6}{3}\)
check giùm mik
a: Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)
\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-2+4}{x-4}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
b: Thay \(x=7+4\sqrt{3}\) vào P, ta được:
\(P=\dfrac{2+\sqrt{3}+2}{\sqrt{3}\left(2+\sqrt{3}\right)}=\dfrac{-6+5\sqrt{3}}{3}\)
Cho \(M=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\)
a) Rút gọn M
b) Tính giá trị của M khi \(x=\sqrt{\sqrt{3}-\sqrt{4-2\sqrt{3}}}\)
c) Tìm x thuộc N để giá trị của M là số tự nhiên
GIẢI GIÚP MK NHA M.N! THANKS NHÌU!
(mk đang cần gấp lắm)
a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
\(M=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{11\sqrt{x}-3}{x-9}\)
\(=\frac{2x-6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{x+4\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{3x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}.\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}}{\sqrt{x}-3}\)
b) Ta có: \(x=\sqrt{\sqrt{3}-\sqrt{4-2\sqrt{3}}}=\sqrt{\sqrt{3}-\sqrt{3-2\sqrt{3}+1}}\)
\(=\sqrt{\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{\sqrt{3}-\left|\sqrt{3}-1\right|}\)
\(=\sqrt{\sqrt{3}-\sqrt{3}+1}=\sqrt{1}=1\)( thỏa mãn ĐKXĐ )
Thay \(x=1\)vào M ta được:
\(M=\frac{3\sqrt{1}}{\sqrt{1}-3}=\frac{3}{1-3}=\frac{-3}{2}\)
c) \(M=\frac{3\sqrt{x}}{\sqrt{x}-3}=\frac{3\sqrt{x}-9+9}{\sqrt{x}-3}=\frac{3\left(\sqrt{x}-3\right)+9}{\sqrt{x}-3}=3+\frac{9}{\sqrt{x}-3}\)
Vì \(x\inℕ\)\(\Rightarrow\)Để M là số tự nhiên thì \(\frac{9}{\sqrt{x}-3}\inℕ\)
\(\Rightarrow9⋮\left(\sqrt{x}-3\right)\)\(\Rightarrow\sqrt{x}-3\inƯ\left(9\right)\)(1)
Vì \(x\ge0\)\(\Rightarrow\sqrt{x}\ge0\)\(\Rightarrow\sqrt{x}-3\ge-3\)(2)
Từ (1) và (2) \(\Rightarrow\sqrt{x}-3\in\left\{-3;-1;1;3;9\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{0;2;4;6;12\right\}\)\(\Rightarrow x\in\left\{0;4;16;36;144\right\}\)( thỏa mãn ĐKXĐ )
Thử lại với \(x=4\)ta thấy M không là số tự nhiên
Vậy \(x\in\left\{0;16;36;144\right\}\)
giúp mk vs,mai nộp rùi!
CMR:\(\sqrt{2;}\)\(\sqrt{3;}\)\(\sqrt{5;}\)\(\sqrt{7}\)ko là số hữu tỉ
ai nhanh mk tk+kb!nhanh nha!
LOVE