Những câu hỏi liên quan
NT
Xem chi tiết
H24
31 tháng 10 2021 lúc 19:40

a) \(\Leftrightarrow A=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}=3\sqrt{2}\)

b) \(\Leftrightarrow B=\sqrt{7-2\sqrt{12}}+\sqrt{12+2\sqrt{27}}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}=2-\sqrt{3}+3+\sqrt{3}=5\)

c) \(\Leftrightarrow C=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{6}{4}=\dfrac{3}{2}\)

d) \(\Leftrightarrow D=3-\left(-2\right)-5=0\)

Bình luận (0)
TN
Xem chi tiết
HP
31 tháng 8 2021 lúc 15:41

\(A=3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)

\(=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}\)

\(=3\sqrt{2}\)

Bình luận (0)
HP
31 tháng 8 2021 lúc 15:42

\(B=\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)

\(=\dfrac{3-\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}+\dfrac{3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{9-5}\)

\(=\dfrac{3}{2}\)

Bình luận (0)
H24
31 tháng 8 2021 lúc 15:43

\(A=3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)

\(A=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}=3\sqrt{2}\)

\(B=\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)

\(B=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{9-5}=\dfrac{6}{4}=\dfrac{3}{2}\)

\(C=\sqrt{7-4\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)

\(C=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}\)

\(C=2-\sqrt{3}+3+\sqrt{3}=5\)

Bình luận (0)
BM
Xem chi tiết
NM
10 tháng 11 2021 lúc 23:11

\(=\dfrac{5-3\sqrt{5}+10+6\sqrt{5}}{\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)}-\dfrac{2\sqrt{10}+2}{\sqrt{3}-\sqrt{2}}\\ =\dfrac{15+3\sqrt{5}}{5-9}-\left(2\sqrt{10}+2\right)\left(\sqrt{3}+\sqrt{2}\right)\\ =-2\sqrt{30}-4\sqrt{5}-2\sqrt{3}-2\sqrt{2}-\dfrac{15+3\sqrt{5}}{4}\\ =\dfrac{-8\sqrt{30}-16\sqrt{5}-8\sqrt{3}-8\sqrt{2}-15-3\sqrt{5}}{4}\\ =\dfrac{-8\sqrt{30}-19\sqrt{5}-8\sqrt{3}-8\sqrt{2}-15}{4}\)

Bình luận (0)
SS
Xem chi tiết
PT
12 tháng 6 2017 lúc 20:09

\(A=\left(\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{a-1}+4\sqrt{a}\right)\left(\frac{a+1}{\sqrt{a}}\right)\)

\(A=\left(\frac{4\sqrt{a}}{a-1}+\frac{4\sqrt{a}\left(a-1\right)}{a-1}\right)\left(\frac{a+1}{\sqrt{a}}\right)\)

\(A=\frac{4a\sqrt{a}}{a-1}.\frac{a+1}{\sqrt{a}}=\frac{4a\left(a+1\right)}{a-1}\)

....... Tới đây được chưa bạn? 

Bình luận (0)
TM
Xem chi tiết
CC
Xem chi tiết
HN
26 tháng 5 2016 lúc 19:40

\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}=\frac{\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)}{\sqrt{2}}=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)

Bình luận (0)
AD
26 tháng 5 2016 lúc 19:14

A =\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
\(A^2=\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\)
\(A^2=\left(\sqrt{4-\sqrt{7}}\right)^2-2.\sqrt{4-\sqrt{7}}.\sqrt{4+\sqrt{7}}+\left(\sqrt{4+\sqrt{7}}\right)^2\)
\(A^2=4-\sqrt{7}-2\sqrt{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}+4+\sqrt{7}\)
\(A^2=8-2\sqrt{16-7 }\)
\(A^2=8-2\sqrt{9}=8-6=2\)
\(A=\frac{+}{ }\sqrt{2}\)
Vì là biểu thức lên phải có tên . lên mới có A @@!

Bình luận (0)
PK
Xem chi tiết
TB
22 tháng 8 2021 lúc 11:20

undefined

Bình luận (0)
H24
22 tháng 8 2021 lúc 11:26

a. \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)

<=> \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

<=> \(P=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

<=> \(P=\dfrac{\sqrt{x}+2}{x-2\sqrt{x}}\)

b. Khi \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\) => \(\sqrt{x}=2+\sqrt{3}\)

=> \(P=\dfrac{2+\sqrt{3}+2}{7+4\sqrt{3}-2\left(2+\sqrt{3}\right)}=\dfrac{4+\sqrt{3}}{7+4\sqrt{3}-4-2\sqrt{3}}=\dfrac{4+\sqrt{3}}{3+2\sqrt{3}}=\dfrac{5\sqrt{3}-6}{3}\)

check giùm mik

 

Bình luận (0)
NT
22 tháng 8 2021 lúc 13:43

a: Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)

\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-2+4}{x-4}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

b: Thay \(x=7+4\sqrt{3}\) vào P, ta được:

\(P=\dfrac{2+\sqrt{3}+2}{\sqrt{3}\left(2+\sqrt{3}\right)}=\dfrac{-6+5\sqrt{3}}{3}\)

 

Bình luận (0)
TM
Xem chi tiết
NN
18 tháng 10 2020 lúc 20:17

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

\(M=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{11\sqrt{x}-3}{x-9}\)

\(=\frac{2x-6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{x+4\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{3x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}.\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}}{\sqrt{x}-3}\)

b) Ta có: \(x=\sqrt{\sqrt{3}-\sqrt{4-2\sqrt{3}}}=\sqrt{\sqrt{3}-\sqrt{3-2\sqrt{3}+1}}\)

\(=\sqrt{\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{\sqrt{3}-\left|\sqrt{3}-1\right|}\)

\(=\sqrt{\sqrt{3}-\sqrt{3}+1}=\sqrt{1}=1\)( thỏa mãn ĐKXĐ )

Thay \(x=1\)vào M ta được:

\(M=\frac{3\sqrt{1}}{\sqrt{1}-3}=\frac{3}{1-3}=\frac{-3}{2}\)

c) \(M=\frac{3\sqrt{x}}{\sqrt{x}-3}=\frac{3\sqrt{x}-9+9}{\sqrt{x}-3}=\frac{3\left(\sqrt{x}-3\right)+9}{\sqrt{x}-3}=3+\frac{9}{\sqrt{x}-3}\)

Vì \(x\inℕ\)\(\Rightarrow\)Để M là số tự nhiên thì \(\frac{9}{\sqrt{x}-3}\inℕ\)

\(\Rightarrow9⋮\left(\sqrt{x}-3\right)\)\(\Rightarrow\sqrt{x}-3\inƯ\left(9\right)\)(1)

Vì \(x\ge0\)\(\Rightarrow\sqrt{x}\ge0\)\(\Rightarrow\sqrt{x}-3\ge-3\)(2)

Từ (1) và (2) \(\Rightarrow\sqrt{x}-3\in\left\{-3;-1;1;3;9\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{0;2;4;6;12\right\}\)\(\Rightarrow x\in\left\{0;4;16;36;144\right\}\)( thỏa mãn ĐKXĐ )

Thử lại với \(x=4\)ta thấy M không là số tự nhiên

Vậy \(x\in\left\{0;16;36;144\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết