Những câu hỏi liên quan
HD
Xem chi tiết
HT
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NT
23 tháng 3 2023 lúc 0:26

\(3S=1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\)

=>2S=1-1/3^100

=>S=1/2-1/2*3^100<1/2

Bình luận (0)
ND
Xem chi tiết
BT
18 tháng 5 2016 lúc 13:42

nhận xét :

\(\frac{1}{2^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{3^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

.............

\(\frac{1}{100^2}=\frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)

vậy

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{101}=\frac{9}{202}< \frac{3}{4}\)

Bình luận (0)
HP
18 tháng 5 2016 lúc 13:51

Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.....;\frac{1}{100^2}< \frac{1}{99.100}\)

=>\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{100}=\frac{3}{4}-\frac{1}{100}< \frac{3}{4}\)

=>S<3/4(đpcm)

Bình luận (0)
DT
23 tháng 3 2017 lúc 21:57

ta có

1/3^2 < 1/2*3 ; 1/4^2 < 1/3*4 ; .........; 1/100^2< 1/99*100

suy ra s=1/2^2+1/3^2+....+1/100^2 < 1/2*3 + 1/3*4 +...........+ 1/99*100

S < 1/4 + 1/2 - 1/3 + 1/3 +..........+ 1/99 - 1/100

suy ra S< 1/4 +1/2 - 1/100

hay S < 3/4 -1/100

mà 3/4 -1/100< 3/4

suy ra s<3/4

Bình luận (0)
DL
Xem chi tiết
VH
Xem chi tiết
NK
17 tháng 4 2023 lúc 15:52

C gbcgghfdhsgxwvdgdrgdtdgst

Bình luận (0)
NH
Xem chi tiết