Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NV
Xem chi tiết
NA
Xem chi tiết
NM
30 tháng 12 2019 lúc 15:21

a ) \(ĐKXĐ:x\ge0;x\ne1\)

\(\frac{x+1+\sqrt{x}}{x+1}:\left[\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right]-1\)

\(=\frac{x+1+\sqrt{x}}{x+1}:\frac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)

\(=\frac{x+1+\sqrt{x}}{x+1}:\frac{\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)

\(=\frac{\left(x+1+\sqrt{x}\right)\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)^2}-1\)

\(=\frac{x+1+\sqrt{x}}{\sqrt{x}-1}-1=\frac{x+2}{\sqrt{x}-1}\)

Bình luận (0)
 Khách vãng lai đã xóa
NM
30 tháng 12 2019 lúc 15:35

B ) Ta có :

 \(Q=P-\sqrt{x}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}-1}-\sqrt{x}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}=1+\frac{3}{\sqrt{x}-1}\)

Đế Q nhận giá trị nguyên thì \(1+\frac{3}{\sqrt{x}-1}\in Z\)

\(\Leftrightarrow\frac{3}{\sqrt{x}-1}\in Z\left(vì1\in Z\right)\)

\(\Leftrightarrow\sqrt{x}-1\inƯ\left(3\right)\)

Ta có bảng sau :

\(\sqrt{x}-1\)3-31-1
\(\sqrt{x}\)4-220
\(x\)16(t/m) 4(t/m)0(t/m)

Vậy để biểu thức \(Q=P-\sqrt{x}\) nhận giá trị nguyên thì \(x\in\left\{16;4;0\right\}\)


 

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
NL
23 tháng 7 2017 lúc 8:56

Mọi người giúp mình với, 3 tiếng nữa phải đi học rồi

Bình luận (0)
NL
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
NK
Xem chi tiết
LV
11 tháng 5 2017 lúc 19:22

moi tay

Bình luận (0)
HL
8 tháng 6 2017 lúc 9:41

giải giùm mình bài 5 với

Bình luận (0)
HH
25 tháng 6 2018 lúc 15:11

mình ko biết

Bình luận (0)