Để nó có nghĩa thì
\(\hept{\begin{cases}x-0,5\ge0\\x-\sqrt{x-0,5}>0\end{cases}}\)
<=> x \(\ge\frac{1}{2}\)
Để nó có nghĩa thì
\(\hept{\begin{cases}x-0,5\ge0\\x-\sqrt{x-0,5}>0\end{cases}}\)
<=> x \(\ge\frac{1}{2}\)
1. Tính x để căn thức sau có nghĩa:
\(\sqrt{\frac{-2x}{x^2-\text{3}x+9}}\)
2. Tìm các giá trị nguyên của x để các biểu thức sau có nghĩa:
a/A=\(\frac{\sqrt{x}+\text{3}}{\sqrt{x}-2}\)
b/B=\(\frac{2\sqrt{x}-1}{\sqrt{x}+\text{3}}\)
3. Cho biểu thức P= (\(\frac{\sqrt{x}}{\sqrt{x}-1}\)-\(\frac{1}{x-x\sqrt{x}}\): (\(\frac{1}{\sqrt{x}+1}\)+\(\frac{2}{x-1}\))
a/ Tìm điều kiện x để P xđ: Rút gọn
b/ Tìm các giá trị của P để P <0
c/ Tính giá trị của P khi x=4-2\(\sqrt{\text{3}}\)
Cho biểu thức:
\(P=\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-1\)
a, Tìm điều kiện của x để biểu thức P có nghĩa và rút gọn biểu thức P
b, Tìm các giá trị nguyên của x để biểu thức\(Q=P-\sqrt{x}\) nhận giá trị nguyên
\(\frac{1}{\sqrt{9-12x+4x^2}}\)
\(\frac{1}{\sqrt{x+2\sqrt{x-1}}}\)
với giá trị nào của x thì căn thức sau có nghĩa
1. Cho biểu thức:
\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)
a) Tìm điều kiện của x để C có nghĩa.
b) Rút gọn C.
c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.
2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)
a) Phân tích A thành nhân tử.
b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)
3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)
\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)
4. Cho biểu thức: \(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)
a) Rút gọn P.
b) Tìm giá trị của x để \(P\:< -\frac{1}{2}\)
c) Tìm giá trị của x để P có giá trị nhỏ nhất.
5. Cho biểu thức:
\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Tìm giá trị của x để Q có nghĩa.
b) Rút gọn Q.
c) Tìm giá trị của của x để Q có giá trị nguyên.
1 Cho biểu thức B=\(\frac{x\sqrt{x}-4x-\sqrt{x}+4}{2x\sqrt{x}-14x+28\sqrt{x}-16}\)
a) Tìm x để A có nghĩa, từ đó rút gọn biểu thức B
b) Tìm các giá trị nguyên của x để biểu thức B nhận giá trị nguyên
2 cho biểu thức P=\(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right)\div\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Rút gọn P
b) Tìm giá trị của x để P=-1
3 Rút gọn Q=\(\frac{2\sqrt{4-\sqrt{5+21+\sqrt{80}}}}{\sqrt{10}-\sqrt{2}}\)
Cho biểu thức: M = 1 - \(\left[\frac{2x-1+\sqrt{x}}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right].\left[\frac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)
a. Tìm giá trị của x để M có nghĩa, rút gọn M
b. Tìm giá trị nhỏ nhất của biểu thức \(\left(2000-M\right)\)khi x\(\ge4\)
Tìm các số nguyên z để giá trị của \(M\in N\)
cho biểu thức: P=\(\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
a) tìm điều kiện của x để P có nghĩa
b) rút gọn P
c) tìm các giá trị nguyên của x để P có giá trị nguyên
Cho biểu thức: A=\(\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)
a) Tìm gía trị của x để A có nghĩa; rút gọn A
b) Tính giá trị của A khi x=\(\sqrt{6+4\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)
c) Tìm giá trị của x để \(\frac{1}{A}\)nguyên
M=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)
a) Tìm điều kiện của x để biểu thức M có nghĩa
b) Rút gọn biểu thức M
c) Tìm giá trị nhỏ nhất của M