41+1+1+1
( 1+ 1/31+1/41+1/51) x( 1/31+1/41+1/51+1/61)- ( 1+1/31+1/41+1/51+1/61)x(1/31+1/41+1/51)=…
5/6 + 1/2 : 3/4
5/6 - 1/2 x 3/4
1/2 x 1/3 : 1/4
1/2 : 1/3 x 1/4
1/2 : 1/3 : 1/4
5/6+ 1/2 x 4/3
= 5/6+ 2/3
= 5/6+4/6
= 11/6
5/6- 3/8
= 20/24- 9/24
= 11/24
2+9+5+52+41+61+1+41+1+5=
Tính thuận lợi:
a, (-41)×324-(-41)×24.
b, (-1)^2+(-1)^3+(-1)^4+...+(-1)^20
a, (-41) x 324 - (-41) x 24
= (-41) x (324 - 24)
= (-41) x 300
= -12300
b, (-1)2 + (-1)3 + (-1)4 + ... + (-1)20
= 1 - 1 + 1 - 1 + ... + 1 ( có 20 số 1 )
= (1 + 1 +...+ 1) - (1 + 1 +...+ 1)
10 số 1 10 số 1
= 0
a) (-41) . 324 - (-41) . 24
= (-41) ( 324 - 24 )
= (-41) . 300
= -12 300
=))
a,(-41)*324-(-41)*24
=(-41)*(324-24)
=(-41)*300
=(-12300)
b,\(\left(-1^2\right)+\left(-1^3\right)+...+\left(-1^{20}\right)\)
=\(\left\{\left(-1^2\right)+\left(-1^3\right)\right\}+\left\{\left(-1^4\right)+\left(-1^5\right)\right\}+...+\left\{\left(-1^{19}\right)\right\}+\left\{\left(-1^{20}\right)\right\}\)
=[(-1)+1]+...+[(-1)+1]
=0
bt 1:thực hiện phép tính
a) 13/25 + 6/41-38/25+35/41-1/2
b)3 1/4.17 3/47-3 1/4.3 3/47
c)0,5.V100-V81
c: \(=0.5\cdot10-9=5-9=-4\)
\(\frac{15}{41}+\frac{-138}{41}\le x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\frac{15}{41}+\frac{-138}{41}\le x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Leftrightarrow-3\le x< 1\)
\(\Leftrightarrow x\in\left\{-3;-2;-1;0\right\}\)
\(\frac{15}{41}+\frac{-138}{41}\le x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{15+(-138)}{41}\le x< \frac{1\cdot3}{6}+\frac{1\cdot2}{6}+\frac{1}{6}\)
\(\Rightarrow\frac{-123}{41}\le x< \frac{3}{6}+\frac{2}{6}+\frac{1}{6}\)
\(\Rightarrow-3\le x< 1\Leftrightarrow x\in\left\{-3;-2;-1;0\right\}\)
\(\frac{15}{41}+\frac{-138}{41}\le x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow-3\le x< 1\)
\(\Rightarrow x\in\left\{-3;-2;-1;0\right\}\)
1. so sánh A và B . biết : A =\(\frac{23^{40}+1}{23^{41}+1}\);B =\(\frac{23^{41}+1}{23^{42}+1}\)
\(B=\frac{23^{41}+1}{23^{42}+1}\)
Vì B < 1
\(\Rightarrow B=\frac{23^{41}+1}{23^{42}+1}< \frac{23^{41}+1+22}{23^{42}+1+22}=\frac{23^{41}+23}{23^{42}+23}=\frac{23(23^{40}+1)}{23\left(23^{41}+1\right)}=\frac{23^{40}+1}{23^{41}+1}=A\)
P/s: Hoq chắc
ta có
\(B=\frac{23^{41}+1}{23^{42}+1}< \frac{23^{41}+1+22}{23^{42}+1+22}=\frac{23^{41}+23}{23^{42}+23}=\frac{23\left(23^{40}+1\right)}{23\left(23^{41}+1\right)}=\frac{23^{40}+1}{23^{41}+1}=A\)
\(\Rightarrow B< A\)
Tính nhanh
a) 31/23 - (7/32 + 8/23)
b) 38/45 - (8/45 - 17/51 - 3/11)
c)(1/3 + 12/67 + 13/41) - ( 79/67 - 28/41)
d) 1/5 + -1/6 + 1/7 + -1/8 + 1/9 + 1/8 + -1/7 + 1/6 + -1/5
Tính nhanh
a) 31/23 - (7/32 + 8/23)
b) 38/45 - (8/45 - 17/51 - 3/11)
c)(1/3 + 12/67 + 13/41) - ( 79/67 - 28/41)
d) 1/5 + -1/6 + 1/7 + -1/8 + 1/9 + 1/8 + -1/7 + 1/6 + -1/5
`a,`
`31/23-(7/32+8/23)`
`=31/23-7/32-8/23`
`=(31/23-8/23)-7/32`
`=1-7/32=25/32`
`b,`
`38/45-(8/45-17/51-3/11)`
`=38/45-8/45+17/51+3/11`
`= (38/45-8/45)+17/51+3/11`
`=2/3+17/51+3/11`
`=1+3/11=14/11`
`c,`
`(1/3+12/67+13/41)-(79/67-28/41)`
`= 1/3+12/67+13/41-79/67+28/41`
`= 1/3+(12/67-79/67)+(13/41+28/41)`
`= 1/3+(-1)+1=1/3+(-1+1)=1/3+0=1/3`
`d,`
`1/5+(-1/6)+1/7+(-1/8)+1/9+1/8+(-1/7)+1/6+(-1/5)`
`= (1/5+ -1/5)+(-1/6+1/6)+(1/7+ -1/7)+(-1/8 +1/8)+1/9`
`= 0+0+0+0+1/9=1/9 .`
cho ba số dương a,b,c thỏa mãn abc=1. CMR A=1/a^2 + 2b^2 +3 + 1/b^2+ 2c^2 +3 + 1/c^2+ 2a^2 +3 <= 1/2
Với 1/a + 1/b + 1/c = 1/(a + b + c) thì không thể nào có ĐK : a = b = c vì nó sẽ như sau :
1/a + 1/b + 1/c = 1/(a + b + c)
=> 3/a = 3/b = 3/c = 1/(a x 3) = 1/(b x 3) = 1/(c x 3) (rất vô lý)
Với 1/(a + b + c) thì phần tử rất nhỏ .
=> Dữ liệu không tồn tại.