Những câu hỏi liên quan
TT
Xem chi tiết
NM
14 tháng 1 2016 lúc 0:39

+\(n=5k\)

\(P=4.5k^3+6.5k^2+3.5k-17\) không chia hết cho 5

+\(n=5k+1\)

\(P=4\left(5k+1\right)^3+6\left(5k+1\right)^2+3\left(5k+1\right)-17\)

\(=4\left(125k^3+75k^2+15k+1\right)+6\left(25k^2+10k+1\right)+15k+3-17\)

\(=4.125k^3+18.25k^2+135k-4\)không chia hết cho 5

+ tương tự ...........

Mình mới chỉ có thế thôi , chưa nghĩa ra cách khác ..

 

 

Bình luận (0)
VD
13 tháng 1 2016 lúc 21:42

bạn phân thành tick rồi chứng minh

Bình luận (0)
LT
Xem chi tiết
KH
Xem chi tiết
KD
Xem chi tiết
NC
Xem chi tiết
NT
26 tháng 11 2023 lúc 8:46

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)

Bình luận (0)
TT
Xem chi tiết
LL
Xem chi tiết
H24
29 tháng 7 2019 lúc 13:31

ta có : M = 34n+4-43n+3 = 34.(n+1) - 43.(n+1)= 81n+1 -64n+1= (81 -64)n+1=17n+1 ⋮ 17 với mọi n

vậy đpcm

Bình luận (0)
KH
Xem chi tiết
EC
29 tháng 9 2019 lúc 9:30

a) n(n + 5) - (n - 3)(n + 2) = n2 + 5n - n2 - 2n + 3n + 6 = 6n + 6 = 6(n + 1) \(⋮\)\(\forall\)\(\in\)Z

b) (n2 + 3n - 1)(n + 2) - n3  + 2 = n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2 = 5n2 + 5n = 5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

c) (6n + 1)(n + 5) - (3n + 5)(2n - 1) = 6n2 + 30n + n + 5 - 6n2 + 3n - 10n + 5 = 24n + 10 = 2(12n + 5) \(⋮\)\(\forall\)\(\in\)Z

d) (2n - 1)(2n + 1) - (4n - 3)(n - 2) - 4 = 4n2 - 1 - 4n2 + 8n + 3n - 6 - 4 = 11n - 11 = 11(n - 1) \(⋮\)11 \(\forall\)\(\in\)Z

Bình luận (0)
TH
Xem chi tiết