Những câu hỏi liên quan
TT
Xem chi tiết
QN
Xem chi tiết
BM
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
BV
7 tháng 4 2018 lúc 20:38

                   TH1:p<3

                   +Vì p<3;mà p là số nguyên tố =>p=2.

                   Với p=2 ta có:p3+2=23+2=8+2=10(là hợp số nên loại)

                   TH2:p>3

                   +vì p>3 nên=>p=6k+1 hoặc p=6k+5.

                   Với p=6k+1 ta có :p3+2=(6k+1)3+2=6k3+1+2=6k3+3:3(là  hợp số nên loại)

                   Với p=6k+5 ta có:p3+2=(6k+5)3+2=6k3+125+2=6k3+127(vì UCLN(6k3;127)=1=>6k3+127 là số nguyên tố nên nhận)

                                                          Vậy với p=6k+5 thì p3+2 cũng là số nguyên tố.

Bình luận (0)
DK
3 tháng 10 2024 lúc 20:15

Dễ

 

Bình luận (0)
NN
Xem chi tiết
DP
28 tháng 8 2024 lúc 21:28

p=3

Bình luận (0)
NN
Xem chi tiết
PQ
Xem chi tiết
CH
10 tháng 2 2018 lúc 17:14

Do p là số nguyên tố nên p là số tự nhiên.

Xét p = 3k + 1=> p2 + 8 = ( 3k + 1 )2 + 8 = 9k2 + 6k + 9 \(⋮\) 3 ( là hợp số )

Xét p = 3k + 2 => p2 + 8 = ( 3k + 2 )+ 8 = 9k2 + 12k + 12 \(⋮\) 3 ( là hợp số )

Xét p = 3k => k = 1 do p là số nguyên tố => p2 + 8 = 9 + 8 = 17 ( thỏa mãn )

Ta có : p+ 2 = 11. Mà 11 là số nguyên tố => Điều cần chứng minh

Bình luận (0)
PT
10 tháng 2 2018 lúc 17:06

Bài này cũng giống như bài tìm p nguyên tố sao cho p2+8 là số nguyên tố thôi

Cách làm cũng giống luôn

Xét p=2

... loại

Xétp=3

... thỏa mãn

Xét p> 3 thì dùng đồng dư

Ta có: \(p\equiv\pm1\left(mod3\right)\)

\(\Rightarrow p^2\equiv1\left(mod3\right)\)

\(\Rightarrow p^2+8\equiv9\left(mod3\right)\)

\(\Rightarrow p^2+8⋮3\)

Mà \(p^2+8>3\)

Nên là hợp số ( loại)

Bình luận (0)
NQ
10 tháng 2 2018 lúc 22:34

+, p=2 thì ko t/m

+, p = 3 => p^2+8 = 17 nguyên tố

=> p^2+2 = 3^2+2 = 11 nguyên tố

+, p > 3 => p ko chia hết cho 3

=> p^2 chia 3 dư 1 => p^2+8 chia hết cho 3

Mà p^2+8 > 3 => p^2+8 là hợp số

Vậy ............

Tk mk nha

Bình luận (0)
LS
Xem chi tiết
GV
3 tháng 10 2017 lúc 17:32

Nếu n > 3 thì vì n là nguyên tố nên n chia cho 3 dư 1 hoặc 2 => \(n=3k\pm1\) 

Suy ra \(n^2+2=9k^2+3\) chia hết cho 3. Trái với giả thiết \(n^2+2\) là số nguyên tố.

Vậy n chỉ có thể bằng 3. Khi đó \(n;n^2+2;n^3+2\) lần lượt là \(3;11;29\) đều là số nguyên tố.

Bình luận (0)
CK
25 tháng 3 2020 lúc 19:19

etetrttymrturfgdfeeeyeeegguthkxgdzyyyzrzeeerrttytjjmetetetetethehtemeteteetu,o;/o

7lkyuxrxytwtqtwyer

Bình luận (0)
 Khách vãng lai đã xóa
NL
28 tháng 3 2020 lúc 9:28

Nếu n > 3 vì n là số nguyên tố nên n chia cho 3 dư 1 hoặc =>n= 3k+1 hoặc n=3k-1

=> n2 +2= 9k2 + 3 chia hết cho 3 (vô lí với đề bài n2 +2 là số nguyên tố)

Vậy n=3 KHI đó n :n+ 2 :n3 + 2 lần 3;11;29 đều là số nguyên tố

Bình luận (0)
 Khách vãng lai đã xóa