phân tích câu sau thành nhân tử dùng hằng đẳng thức
a^2b - b^2 (x+y)^2
Bài 1: Phân tích đa thức thành nhân tử ( phương pháp dùng hằng đẳng thức)
(a-2b)^2-4b^2 (a-b)^2-c^2 (a+b)^2-4 (a+3b)^2-9b^2
(x-3)^3-27 (x+1)^3-125
Bài 1: Phân tích đa thức thành nhân tử ( phương pháp dùng hằng đẳng thức)
(a-2b)^2-4b^2 (a-b)^2-c^2 (a+b)^2-4 (a+3b)^2-9b^2
(x-3)^3-27 (x+1)^3-125
phân tích đa thức thành nhân tử dùng hằng đẳng thức
a/ (x^2+y^2 - 5)^2 - 4(xy-2)^2
b/ (9x^2 + 90x + 225) - (x - 7)^2
a) =( x2+y2-5)2-[2(xy-2)]2
=( x2+y2-5)2- (2xy-4)2
=(x2+y2-5+2xy-4)(x2+y2-5-2xy+4)
=[(x+y)2-9][(x-y)2-1]
phân tích tiếp HĐT 2 ở 2 thừa số
Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức:
16 - ( a-b)2
\(=\left(4-a+b\right)\left(4+a-b\right)\)
phân tích các đa thức sau thành nhân tử bằng phương pháp dùng hằng đẳng thức:
a) ( 4x^2 -3x -18 )^2 - ( 4x^2 +3x)^2
b) [ 4abcd +( a2+ b2) ( c2 +d2) ]2 -4[ cd (a2 + b2) +ab (c2 + d2)]2
Bài 1: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 1, 2
1) x3 – 2x – x 2) 6x2 + 12xy + 6y2
3) 2y3 + 8y3 + 8y 4) 5x2 – 10xy + 5y2
Bài 2: Phân tích các đa thức sau thành nhân tử
HD: Dùng pp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 3, 6, 7
1) x3 – 64x 2) 8x2y – 18y 3) 24x3 – 3
Bài 3: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp nhóm hạng tử phối hợp dùng hằng đẳng thức
1) 5x2 + 10x + 5 – 5y2 2) 3x3 – 6x2 + 3x – 12xy2
3) a3b – ab3 + a2 + 2ab + b2 4) 2x3 – 2xy2 – 8x2 + 8xy
Giup mik với mik cần gấp lắm!
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)
Bài 1;
1) \(x^3-2x-x=x\left(x^2-2x-1\right)\)
2) \(6x^2+12xy+6y^2=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\)
3) \(2y^3+8y^3+8y=10y^3+8y=2y\left(5y^2+4\right)\)
4) \(5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
1) \(x^3-64x=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\)
2) \(8x^2y-18y=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\)
3) \(24x^3-3=3\left(8x^3-1\right)=3\left(2x-1\right)\left(4x^2+2x+1\right)\)
Bài 3:
1) \(5x^2+10x+5-5y^2=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y\right]=5\left(x-y+1\right)\left(x+y+1\right)\)
2) \(3x^3-6x^2+3x-12xy^2=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=3x\left(x-2y-1\right)\left(x+2y-1\right)\)
3) \(a^3b-ab^3+a^2+2ab+b^2=ab\left(a^2-b^2\right)+\left(a+b\right)^2=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2=\left(a+b\right)\left(a^2b-ab^2+a+b\right)\)
4) \(2x^3-2xy^2-8x^2+8xy=2x\left(x^2-y^2-4x+4y\right)=2x\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]=2x\left(x-y\right)\left(x+y-4\right)\)
phân tích x + 10√x + 5 thành nhân tử (dùng hằng đẳng thức 1 và 2)
\(=x+10\sqrt{x}+25-20=\left(\sqrt{x}+5\right)^2-\left(2\sqrt{5}\right)^2\\ =\left(\sqrt{x}+5-2\sqrt{5}\right)\left(\sqrt{x}+5+2\sqrt{5}\right)\)
Phân tích đa thức thành nhân tử(phương pháp dùng hằng đẳng thức)
36(x-y)-25(2x-1)2
đề sai rùi phải là : \(36\left(x-y\right)^2-25\left(2x-1\right)^2\)
\(=>\left[6\left(x-y\right)\right]^2-\left[5\left(2x-1\right)\right]^2=\left[6\left(x-y\right)-5\left(2x-1\right)\right]\left[6\left(x-y\right)+5\left(2x-1\right)\right]\)
\(=>\left(6x-6y-10x+5\right)\left(6x-6y+10x-5\right)=\left(5-4x-6y\right)\left(16x-6y-5\right)\)
Áp dụng HDT : x^2 -y^2 =(x-y) (x+y)
Ủng hộ = 1 cái t i c k nha cảm ơn
Phân tích các đa thức sau thành nhân tử bằng phương pháp dùng hằng đẳng thức:
a) \(9-\left(x-y\right)^2\)
b) \(\left(x^2+4\right)^2-16x^2\)
a) 9 -(x-y)2
= 32 - (x-y)2
= (3-x+y).(3+x-y)
b) (x2 +4)2 - 16x2
= (x2+4)2 - (4x)2
= (x2 + 4 -4x).(x2 + 4 +4x)
\(9-\left(x-y\right)^2\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3+x-y\right)\)
\(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\left(x+2\right)^2\)
a) 9 - ( x - y ) ^2
= 3 ^ 2 - ( x - y ) ^2
= ( 3 - x +y )( 3 + x -y )
b) (x ^ 2 + 4 ) ^ 2 - 16x ^2
= (x ^ 2 + 4 ) ^ 2 - ( 4x ) ^2
= ( x ^ 2 + 4 - 4x )( x ^ 2 +4 +4x)
k cho mk na ^.^