x+4/2012+x+3/2013=x+2/2014+x+1/2015
Tìm x, biết: (x+4)/2012+(x+3)/2013=(x+2)/2014+(x+1)/2015
\(\frac{x+4}{2012}+\frac{x+3}{2013}=\frac{x+2}{2014}+\frac{x+1}{2015}\)
=> \(\frac{x+4}{2012}+1+\frac{x+3}{2013}+1=\frac{x+2}{2014}+1+\frac{x+1}{2015}+1\)
=> \(\frac{x+2016}{2012}+\frac{x+2016}{2013}=\frac{x+2016}{2014}+\frac{x+2016}{2015}\)
=> \(\frac{x+2016}{2012}+\frac{x+2016}{2013}-\frac{x+2016}{2014}-\frac{x+2016}{2015}=0\)
=> \(\left(x+2016\right).\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
Vì \(\frac{1}{2012}>\frac{1}{2014};\frac{1}{2013}>\frac{1}{2015}\)
=> \(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\ne0\)
=> \(x+2016=0\)
=> \(x=-2016\)
Tìm x biết: x+1/2015+x+2/2014=x+3/2013+x+4/2012
x-1/2012+x-2/2013 +x-3/2014=x-4/2015+x-5/2016+x-6/2017
\(\dfrac{x-1}{2012}+\dfrac{x-2}{2013}+\dfrac{x-3}{2014}=\dfrac{x-4}{2015}+\dfrac{x-5}{2016}+\dfrac{x-6}{2017}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2012}+1\right)+\left(\dfrac{x-2}{2013}+1\right)+\left(\dfrac{x-3}{2014}+1\right)=\left(\dfrac{x-4}{2015}+1\right)+\left(\dfrac{x-5}{2016}+1\right)+\left(\dfrac{x-6}{2017}+1\right)\)
\(\Leftrightarrow\dfrac{x+2011}{2012}+\dfrac{x+2011}{2013}+\dfrac{x+2011}{2014}-\dfrac{x+2011}{2015}-\dfrac{x+2011}{2016}-\dfrac{x+2011}{2017}=0\)
\(\Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}-\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\)
\(\Leftrightarrow x=-2011\)( do \(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}-\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\ne0\))
Tim x biet x-1/2015 + x-2/2014= x-3/2013 + x-4/2012
=>(x-1)/2015 - 1 + (x-2(/2014 -1 = (x-3)/2013 -1 + (x-4)/2012 -1
=>(x-2016)*(1/2015+1/2014-1/2013-1/2012)=0
=>x=2016
Trừ 1 ở mỗi p/s,ta có:
\(\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)=\left(\frac{x-3}{2013}-1\right)+\left(\frac{x-4}{2012}-1\right)\)
\(\Leftrightarrow\left(\frac{x-2016}{2015}\right)+\left(\frac{x-2016}{2014}\right)=\left(\frac{x-2016}{2013}\right)+\left(\frac{x-2016}{2012}\right)\)
\(\Leftrightarrow\frac{x-2016}{2015}+\frac{x-2016}{2014}-\frac{x-2016}{2013}-\frac{x-2016}{2012}=0\)
\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)
Vì \(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\ne0\)
=>x-2016=0
=>x=2016
Vậy..................
mình hỏi bài này :tìm số tự nhiên x biết :(x-2)^2014=(x-2)^2016
x+5/2012+x+4/2013+x+3/2014=x+2/2015+x+1/2016+x/2017
Ta có : \(\frac{x+5}{2012}+\frac{x+4}{2013}+\frac{x+3}{2014}=\frac{x+2}{2015}+\frac{x+1}{2016}+\frac{x}{2017}\)
\(\Rightarrow\frac{x+5}{2012}+1+\frac{x+4}{2013}+1+\frac{x+3}{2014}=\frac{x+2}{2015}+1+\frac{x+1}{2016}+1+\frac{x}{2017}+1\)
\(\Leftrightarrow\frac{x+2017}{2012}+\frac{x+2017}{2013}+\frac{x+2017}{2014}=\frac{x+2017}{2015}+\frac{x+2017}{2016}+\frac{x+2017}{2017}\)
\(\Leftrightarrow\frac{x+2017}{2012}+\frac{x+2017}{2013}+\frac{x+2017}{2014}-\frac{x+2017}{2015}-\frac{x+2017}{2016}-\frac{x+2017}{2017}=0\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\right)=0\)
\(\text{Mà
}\)\(\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\right)\ne0\)
\(\text{Nên : }\) x + 2017 = 0
=> x = -2017
x-1/2016+x-2/2015+x-3/2014=x-4/2013+x-5/2012+x-6/2011
x+3/2013 + x+4/2012 + x+5/2011 = x+1/2015 + x+2/2014 + x/2016 Tìm x
cong 1 vao tung hang tu (vd 3/2013) roi dc tong 2016
x+3/2013 + x+4/2012 + x+5/2011 = x+1/2015 + x+2/2014 + x/2016 Tìm x
\(\frac{x+3}{2013}+1+\)\(\frac{x+4}{2012}+1+\frac{x+5}{2011}+1\)=\(\frac{x+1}{2015}+1+\frac{x+2}{2014}+1+\frac{x}{2016}+1\)
\(\Rightarrow\frac{x+2016}{2013}+\frac{x+2016}{2012}+\frac{x+2016}{2011}=\frac{x+2016}{2014}+\frac{x+2016}{2016}\)
\(\Rightarrow\left(2016+x\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2016}=0\right)\)
Vì 1/2016+...+1/2011>0 nên (x+2016)=0
suy ra x= -2016
nếu đúng xin kết bạn
ch
rối loạn mắt rồi hu hu
Tìm x:
(x+4/2012)+(x+3/2013)=(x+2/2014)+(x+1/2015)
\(\frac{x+4}{2012}+\frac{x+3}{2013}=\frac{x+2}{2014}+\frac{x+1}{2015}\)
\(\Rightarrow\left(\frac{x+4}{2012}+1\right)+\left(\frac{x+3}{2013}+1\right)=\left(\frac{x+2}{2014}+1\right)+\left(\frac{x+1}{2015}+1\right)\)
\(\Rightarrow\frac{x+2016}{2012}+\frac{x+2016}{2013}=\frac{x+2016}{2014}+\frac{x+2016}{2015}\)
\(\Rightarrow\frac{x+2016}{2012}+\frac{x+2016}{2013}-\frac{x+2016}{2014}-\frac{x+2016}{2015}=0\)
\(\Rightarrow\left(x+2016\right)\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
Vì \(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\ne0\) nên x + 2016 = 0
=> x = - 2016