tính tổng của dãy số sau \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\)
Tính tổng 50 số hạng đầu tiên của dãy : \(\frac{1}{2\cdot4};\frac{1}{4\cdot6};\frac{1}{6\cdot8};\frac{1}{8\cdot10};...\)
Gán A=2 ; B=0 Nhập công thức : B=1/A(A+2) : A=A+2 : C=C+B
Cho dãy số\(\frac{1}{1},\frac{1}{2},\frac{2}{2},\frac{1}{3},\frac{2}{3},\frac{3}{3},\frac{1}{4},\frac{2}{4},\frac{3}{4},\frac{4}{4},...\)
a. Tìm số hạng thứ 50 của dãy.
b. Phân số\(\frac{15}{30}\)là số hạng thứ bao nhiêu của dãy
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Cho dãy
\(\frac{1}{1},\frac{2}{1},\frac{1}{2},\frac{3}{1},\frac{2}{2},\frac{1}{3},\frac{4}{1},\frac{3}{2},\frac{2}{3},\frac{1}{4},....\)
a) Tìm quy luật của dãy và viết thêm 5 phân số nữa theo quy luật ấy
b) Phân số \(\frac{50}{31}\)là số hạng thứ mấy của dãy ?
Bạn tham khảo nhé ! Mk ko có thời gian nha !
a, Ở đây ta dễ thấy quy luật như sau :
Tử số : Nhóm 1: 1 - Nhóm 2: 1,2 - Nhóm 3 : 1 , 2 , 3 - Nhóm 4: 1 , 2 , 3 , 4 - Nhóm 5: 1 , 2 , 3 , 4 , 5 - .......
Mẫu số : Nhóm 1: 1 - Nhóm 2: 2 , 1 - Nhóm 3: 3 , 2 , 1 - Nhóm 4: 4 ; 3 ; 2 ; 1 - Nhóm 5: 5 ; 4 ; 3 ; 2 ; 1 - ......
Vậy 5 phân số tiếp theo thuộc 5 nhóm lần lượt là : 1/5 ; 2/4 ; 3/3 ; 4/2 5/1
b, 26/7 có tử số là 26 và mẫu số là 7 vậy nó thuộc nhóm thứ 33 của dãy số , và đứng thứ 26 .
Số các phân số từ nhóm 1 đến 32 là :
1 + 2 + 3 + .... + 32 = 528
Vậy 26/7 đứng thứ :
528 + 26 = 554 .
Đáp số : ...... ( tự vt )
k mk nha Nguyễn Văn Cường
Số thứ 2015 của dãy số sau là dãy số nào?
\(\frac{1}{1};\frac{2}{1};\frac{1}{2};\frac{3}{1};\frac{2}{2};\frac{4}{1};\frac{3}{2};\frac{2}{3};\frac{1}{4};\frac{5}{1};\frac{4}{2};\frac{3}{3};..........\)
Số thứ 2015 của dãy là \(\frac{9}{14}\)nha bạn
bạn Kiên ơi nếu biết thì giải hẳn ra nhé bạn mình cũng đang bí bài đó
Cho dãy số: \(\frac{1}{3};\frac{1}{{{3^2}}};\frac{1}{{{3^3}}};\frac{1}{{{3^4}}};\frac{1}{{{3^5}}};...\). Số hạng tổng quát của dãy số này là:
A. \({u_n} = \frac{1}{3}.\frac{1}{{{3^{n + 1}}}}\).
B. \({u_n} = \frac{1}{{{3^{n + 1}}}}\).
C. \({u_n} = \frac{1}{{{3^n}}}\).
D. \({u_n} = \frac{1}{{{3^{n - 1}}}}\).
Ta thấy dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân có số hạng đầu \({u_1} = \frac{1}{3}\) và công bội \(q = \frac{1}{3}\).
Số hạng tổng quát của dãy số là: \({u_n} = {u_1}.{q^{n - 1}} = \frac{1}{3}.{\left( {\frac{1}{3}} \right)^{n - 1}} = {\left( {\frac{1}{3}} \right)^n} = \frac{1}{{{3^n}}}\).
Chọn C.
viết tất cả các phân số dương thành dãy:\(\frac{1}{1};\frac{2}{1};\frac{1}{2};\frac{3}{1};\frac{2}{2};\frac{1}{3};\frac{4}{1;};\frac{3}{2};\frac{2}{3};\frac{1}{4};...\)
a)hãy nêu quy luật viết của dãy và viết tiếp năm phân số nũa theo quy luật ấy
b)phân số\(\frac{50}{31}\) là số hạng thứ mấy của dãy.
a) Ta xét tử số:
p/s đầu: 1
2 p/s tiếp theo: 2, 1
3 p/s tiếp theo: 3, 2, 1
4 p/s tiếp theo: 4, 3, 2, 1
Ta xét mẫu số:
p/s đầu: 1
2 p/s tiếp theo: 1, 2
3 p/s tiếp theo: 1, 2, 3
4 p/s tiếp theo: 1, 2, 3, 4
Vậy 5 p/s tiếp theo của dãy là: \(\frac{5}{1};\frac{4}{2};\frac{3}{3};\frac{2}{4};\frac{1}{5}\)
Cho dãy số
\(1,\frac{1}{2},\frac{1}{4},\frac{1}{8}, \ldots \;\) (số hạng sau bằng một nửa số hạng liền trước nó)
Công thức tổng quát của dãy số đã cho là:
A. \({u_n} = {\left( {\frac{1}{2}} \right)^n}\)
B. \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{{{2^{n - 1}}}}\)
C. \({u_n} = \frac{1}{{2n}}\)
D. \({u_n} = {\left( {\frac{1}{2}} \right)^{n - 1}}\)
Ta có: \({u_1} = 1,\;q = \frac{{\frac{1}{2}}}{1} = \frac{1}{2}\).
Suy ra công thức tổng quát của dãy số \({u_n} = {\left( {\frac{1}{2}} \right)^{n - 1}}\).
Chọn đáp án D.
Chứng Tỏ rằng tổng của dãy phân số sau lớn hơn 1
\(\frac{5}{7},\frac{1}{3},\frac{7}{15},\frac{1}{4},\frac{2}{7},\frac{1}{5}\)
\(\frac{5}{7}+\frac{1}{3}+\frac{7}{15}+\frac{1}{4}+\frac{2}{7}+\frac{1}{5}\)
= \(\left(\frac{5}{7}+\frac{2}{7}\right)+\left(\frac{1}{3}+\frac{7}{15}+\frac{1}{5}\right)+\frac{1}{4}\)
= 1 + 1 + \(\frac{1}{4}\)
= 2\(\frac{1}{4}\)> 1 ( dpcm )