Những câu hỏi liên quan
RL
Xem chi tiết
TA
13 tháng 5 2019 lúc 16:36

M = 0

Bình luận (1)
GT
13 tháng 5 2019 lúc 18:49

\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)-\left(\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)\)

\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)(1-1)\)

\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right).0\)

\(M=0\)

Bình luận (0)
DD
18 tháng 5 2019 lúc 20:17

Vì số bị trừ và số trừ gồm hai tích đảo ngược nhau nên M=0

Bình luận (0)
DH
Xem chi tiết
TC
Xem chi tiết
TC
16 tháng 9 2016 lúc 15:24

bucminh

Bình luận (0)
TH
Xem chi tiết
VM
11 tháng 12 2016 lúc 17:01

M = \(\frac{1}{3}\)\(\frac{1}{6}\)\(\frac{1}{10}\)\(\frac{1}{15}\)( Mẫu chung: 60 )
M = \(\frac{20}{60}\)\(\frac{10}{60}\)\(\frac{6}{60}\)\(\frac{4}{60}\)
M = \(\frac{40}{60}\)
M = \(\frac{2}{3}\)

Bình luận (0)
PL
11 tháng 12 2016 lúc 16:53

M = 1/3 + 1/6 + 1/10 + 1/15

M= 1/3+ 6 + 10 + 15

M = 1/34

Bình luận (0)
NV
Xem chi tiết
H24
5 tháng 7 2019 lúc 20:27

\(\frac{1}{M}=\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{59.60}{2}}\)

\(\frac{1}{M}=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{59.60}\)

\(\frac{1}{M}=2.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{59}-\frac{1}{60}\right)\)

\(\frac{1}{M}=\frac{2}{3}-\frac{2}{60}< \frac{2}{3}\)

-theo t đề là M chứ ko phải 1/M 

Bình luận (0)
H24
Xem chi tiết
TD
19 tháng 4 2020 lúc 16:10

Ta có : \(\frac{a^3-1}{\left(a+1\right)^3+1}=\frac{\left(a-1\right)\left(a^2+a+1\right)}{\left(a+1+1\right)\left(\left(a+1\right)^2-\left(a+1\right)+1\right)}=\frac{a-1}{a+2}\)

\(M=\frac{100^3-1}{2^3+1}.\frac{2^3-1}{3^3+1}.\frac{3^3-1}{4^3+1}...\frac{99^3-1}{100^3+1}\)

\(M=\frac{999999}{9}.\frac{1}{4}.\frac{2}{5}.\frac{3}{6}...\frac{98}{101}=\frac{999999.1.2.3}{9.99.100.101}\)

\(M=\frac{10101.2}{3.100.101}=\frac{20202}{30300}>\frac{20200}{30300}=\frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
DN
Xem chi tiết
NH
Xem chi tiết
KB
24 tháng 3 2019 lúc 14:56

\(A=\frac{m-1}{1}+\frac{m-2}{2}+...+\frac{2}{m-2}+\frac{1}{m-1}\)

\(=\frac{m-1}{1}+\frac{m-2}{2}+...+\frac{m-\left(m-2\right)}{m-2}+\frac{m-\left(m-1\right)}{m-1}\)

\(=m+\frac{m}{2}+\frac{m}{3}+...+\frac{m}{m-1}-1-1-...-1\)

\(=m+\frac{m}{2}+\frac{m}{3}+...+\frac{m}{m-1}-\left(m-1\right)\)

\(=\frac{m}{2}+\frac{m}{3}+...+\frac{m}{m-1}+\frac{m}{m}\)

\(=m\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{m}\right)\)

\(\Rightarrow\frac{A}{B}=m\)

Bình luận (0)
TA
Xem chi tiết
NM
29 tháng 6 2020 lúc 15:00

\(M=\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{4005}\)

\(\frac{M}{2}=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{8010}\)

\(\frac{M}{2}=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{89x90}\)

\(\frac{M}{2}=\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}+...+\frac{90-89}{89.90}\)

\(\frac{M}{2}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{89}-\frac{1}{90}=\frac{1}{3}-\frac{1}{90}\)

\(M=\frac{2}{3}-\frac{2}{90}< \frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa