\(A=\frac{m-1}{1}+\frac{m-2}{2}+...+\frac{2}{m-2}+\frac{1}{m-1}\)
\(=\frac{m-1}{1}+\frac{m-2}{2}+...+\frac{m-\left(m-2\right)}{m-2}+\frac{m-\left(m-1\right)}{m-1}\)
\(=m+\frac{m}{2}+\frac{m}{3}+...+\frac{m}{m-1}-1-1-...-1\)
\(=m+\frac{m}{2}+\frac{m}{3}+...+\frac{m}{m-1}-\left(m-1\right)\)
\(=\frac{m}{2}+\frac{m}{3}+...+\frac{m}{m-1}+\frac{m}{m}\)
\(=m\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{m}\right)\)
\(\Rightarrow\frac{A}{B}=m\)