tìm x
12x (x-1) =0
Tìm x biết:
a) (2-x)3+(2+x)3-12x(x+1)=0
(2-x)^3+(2+x)^3-12x(x+1)=0
=>\(8-12x+6x^2-x^3+8+12x+6x^2+x^3-12x\left(x+1\right)=0\)
=>\(12x^2+16-12x^2-12x=0\)
=>16-12x=0
=>4-3x=0
=>x=4/3
a) Tính (6x³++11x²-12x-9) b) Tìm x biết 1) 2x²+4x-0 2) (x+2)²-(x+2)(x+1)-0
b:
1: \(\Leftrightarrow2x\left(x+2\right)=0\)
=>x=0 hoặc x=-2
Tìm x
a, x\(^2\)+12x+36=0
b, x\(^2\)-1=0
c, 25x\(^2\)-9=0
a: \(x^2+12x+36=0\)
\(\Leftrightarrow\left(x+6\right)^2=0\)
\(\Leftrightarrow x+6=0\)
hay x=-6
b: Ta có: \(x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c: Ta có: \(25x^2-9=0\)
\(\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
Lời giải:
a. $x^2+12x+36=0$
$\Leftrightarrow (x+6)^2=0$
$\Leftrightarrow x+6=0$
$\Leftrightarrow x=-6$
b.
$x^2-1=0$
$\Leftrightarrow (x-1)(x+1)=0$
$\Leftrightarrow x-1=0$ hoặc $x+1=0$
$\Leftrightarrow x=1$ hoặc $x=-1$
c.
$25x^2-9=0$
$\Leftrightarrow (5x)^2-3^2=0$
$\Leftrightarrow (5x-3)(5x+3)=0$
$\Leftrightarrow 5x-3=0$ hoặc $5x+3=0$
$\Leftrightarrow x=\frac{3}{5}$ hoặc $x=-\frac{3}{5}$
Cho biểu thức sau (với x ≥ 0 ; x ≠ 1 v à x ≠ 1 / 4 ).
Tìm giá trị của x để B < 0.
B = x x + x + x x x - 1 - x + 3 1 - x × x - 1 2 x + x - 1
A. 0 < x < 1 / 4
B. 0 ≤ x < 1 / 4
C. x > 1 / 4 x
D. x ≤ 0
Cho biểu thức sau (với x ≥ 0 ; x ≠ 1 v à x ≠ 1 / 4 ).
Tìm giá trị của x để B < 0.
B = x x + x + x x x - 1 - x + 3 1 - x × x - 1 2 x + x - 1
A. 0 < x < 1 / 4
B. 0 ≤ x < 1 / 4
C. x > 1 / 4 x
D. x ≤ 0
Tìm x biết
a) x − 1 6 − 6 16 = 25 %
b) 3 x − 1 − 1 2 x + 5 = 0
Cho biểu thức B = x x + x + x x x − 1 − x + 3 1 − x . x − 1 2 x + x − 1 (với x ≥ 0 ; x ≠ 1 và x ≠ 1 4 )
Tìm tất cả các giá trị của x để B<0.
Ta có B = x x + x + 1 x − 1 x + x + 1 + x + 3 x − 1 . x − 1 2 x + x − 1
= x x − 1 + x + 3 x − 1 . x − 1 x + 1 2 x − 1 x + 1 = 2 x + 3 x − 1 . x − 1 2 x − 1 = 2 x + 3 2 x − 1
Vì x ≥ 0 nên 2 x + 3 > 0 , do đó B<0 khi 2 x − 1 < 0 ⇔ x < 1 4 .
Mà x ≥ 0 ; x ≠ 1 và x ≠ 1 4 nên ta được kết quả 0 ≤ x < 1 4 .
Tìm x , biết :
a) (x-2)3 - 6(x+1)2 - x3 + 12 = 0
b) x3 - 6x2 + 12x - 8 = 0
c) 8x3 - 12x2 + 6x - 1 = 0
a) (x-2)3 - 6(x+1)2 - x3 + 12 = 0
<=> x3-6x2+12x-8-6(x2+2x+1)-x3+12=0
<=> x3-6x2+12x-8-6x2-12x-6-x3+12=0
<=> -12x2+4=0
<=> \(x=\frac{1}{\sqrt{3}},x=-\frac{1}{\sqrt{3}}\)
vậy pt có 2 nghiệm....
b) x3 - 6x2 + 12x - 8 = 0
<=> (x3-2x2)-(4x2-8x)+(4x+8)=0
<=> (x-2)(x2-4x+4)=(x-2)3=0
=> x=2 là nghiệm
c) 8x3 - 12x2 + 6x - 1 = 0
<=> (2x-1)3=0
<=> x=1/2
a) \(\left(x-2\right)^3-6\left(x+1\right)^2-x^3+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-6\left(x^2+2x+1\right)-x^3+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-6x^2-12x-6-x^3+12=0\)
\(\Leftrightarrow-12x^2-2=0\)
\(\Leftrightarrow-2\left(6x^2+1\right)=0\)
\(\Leftrightarrow6x^2+1=0\) (vô nghiệm)
Vậy không có giá trị nào của x thỏa mãn pt
b) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy x=2
c) \(8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy \(=\frac{1}{2}\)
\(\left(x-2-x\right)\left(x^2-4x+4+x^2-2x+x^2\right)-6x^2-12x-6+12=0\)
\(-2\left(2x^2-6x+4\right)-6x^2-12x+6=0\)
\(-4x^2+12x-8-6x^2-12x+6=0\)
-10x^2-2=0
5x^2+1=0
x^2=-1/5
x=\(\varnothing\)
1. Tìm x , biết :
a) x^2 + 10x + 16 = 0
b) 4x^2 - 12x - 7 = 0
a) x2 + 10x + 16 = 0
<=> x2 + 2x + 8x + 16 = 0
<=> x( x + 2 ) + 8( x + 2 ) = 0
<=> ( x + 2 )( x + 8 ) = 0
<=> \(\orbr{\begin{cases}x+2=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-8\end{cases}}\)
b) 4x2 - 12x - 7 = 0
<=> 4x2 + 2x - 14x - 7 = 0
<=> 2x( 2x + 1 ) - 7( 2x + 1 ) = 0
<=> ( 2x + 1 )( 2x - 7 ) = 0
<=> \(\orbr{\begin{cases}2x+1=0\\2x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
a. \(x^2+10x+16=0\)
\(\Leftrightarrow x^2+8x+2x+16=0\)
\(\Leftrightarrow x\left(x+8\right)+2\left(x+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-8\end{cases}}\)
b. \(4x^2-12x-7=0\)
\(\Leftrightarrow4x^2+2x-14x-7=0\)
\(\Leftrightarrow2x\left(2x+1\right)-7\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\2x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}2x=7\\2x=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}\)
Bài làm :
\(\text{a) }x^2+10x+16=0\)
\(\Leftrightarrow x^2+8x+2x+16=0\)
\(\Leftrightarrow x\left(x+8\right)+2\left(x+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-8\end{cases}}\)
\(\text{b) }4x^2-12x-7=0\)
\(\Leftrightarrow4x^2+2x-14x-7=0\)
\(\Leftrightarrow2x\left(2x+1\right)-7\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\2x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}2x=7\\2x=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}.}\)