tìm x thuộc số nguyên sao cho 14-x/x-4 đạt giá trị lớn nhất
Sẽ hậu tạ like
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm số nguyên x sao cho A= 14-x/4-x đạt giá trị lớn nhất
Tìm x thuộc số nguyên sao cho biểu thức A = \(\dfrac{1}{4+x}\) đạt giá trị lớn nhất.
A đạt giá trị lớn nhất khi \(4+x\) là số dương nhỏ nhất
Mà x là số nguyên \(\Rightarrow4+x\) là số nguyên dương nhỏ nhất
\(\Rightarrow4+x=1\Rightarrow x=-3\)
Tìm x thuộc số nguyên sao cho biểu thức A = \(\dfrac{5x-19}{x-4}\) đạt giá trị lớn nhất.
`A = (5x - 19)/(x-4) `
`= (5x-20)/(x-4) + 1/(x-4)`
`= 5 + 1/(x-4) `
`A ` đạt giá trị lớn nhất `<=> 1/(x-4)` có giá trị lớn nhất
`<=> x - 4` là số nguyên dương nhỏ nhất
`<=> x - 4 = 1`
`<=> x = 5`
Vậy `A` đạt giá trị lớn nhất `<=> x = 5`
1) Cho biểu thức A=2006-x/6-x. tìm giá trị nguyên của x để A đạt giá trị lớn nhất. tìm giá trị lớn nhất đó.
2) tìm giá trị nhỏ nhất của biểu thức: P=4-x/14-x;(x thuộc Z). khi đó x nhận giá trị nguyên nào ?
tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam
tìm x thuộc số nguyên sao cho biều thức A = 7-x tất cả trên x-5 đạt giá trị lớn nhất
x = (5*a+7)
_____
(a+1)
2. Tìm x thuộc số nguyên sao cho biểu thức A 18-3x 6-2x = đạt giá trị lớn nhất
Biểu thức không rõ ràng. Bạn xem lại.
Cho phân số A = 2n+4/x-3. a) Tìm số nguyên x để A là một số nguyên. b) Tìm số nguyên x để A đạt giá trị lớn nhất. c) Tìm số nguyên x để A đạt giá trị nhỏ nhất.
ta có
\(A=\dfrac{2x+4}{x-3}=\dfrac{2x-6+10}{x-3}=2+\dfrac{10}{x-3}\) nguyên khi x-3 là ước của 10 hay
\(x-3\in\left\{-10,-5,-2,-1,1,2,5,10\right\}\) hay
\(x\in\left\{-7,-2,2,4,5,8,13\right\}\)
b. Khi x nguyên thì A lớn nhất khi x-3= 1 hay x= 4.
c. Để A nhỏ nhất thì x -3 =-1 hay x = 2
Cho biểu thức A=3/x-1
a. Tìm số nguyên x để A đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất.
b. Tìm số nguyên x để A đạt giá trị lớn nhất. Tìm giá trị lớn nhất.
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
Tìm x thuộc số nguyên sao cho biểu thức A = \(\dfrac{10x+25}{2x+4}\) đạt giá trị nhỏ nhất.
Do `x ∈ Z => 2x` là só chẵn `=> 2x + 4` là số chẵn
`A = (10x + 25)/(2x+4)`
`= (10x + 20)/(2x+4) + 5/(2x+4)`
`= 5 + 5/(2x+4)`
`A ` có giá trị nhỏ nhất khi `5/(2x+4)` có giá trị nhỏ nhất
`<=> 2x+4` là số nguyên âm nhỏ nhất
`<=> 2x + 4 = -2`
`<=> 2x = -6`
`<=> x = -3`
Vậy `A ` đạt giá trị nhỏ nhất `<=> x = -3`