Những câu hỏi liên quan
HD
Xem chi tiết
NH
Xem chi tiết
NL
26 tháng 1 2017 lúc 11:36

bài này mình cũng học rồi nhưng mình quên hết rồi OK

Bình luận (0)
NH
26 tháng 1 2017 lúc 11:45

THẾ BẠN CỐ GHI RA VỞ KO BẠN RÚP MÌNH VS

Bình luận (0)
H24
Xem chi tiết
HT
Xem chi tiết
DV
16 tháng 6 2016 lúc 18:17

a) \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\) (quy đồng mẫu chung)

Vì b,d > 0 nên bd > 0. Do đó ad < bc (đpcm)

b) ad < bc \(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\) (cùng chia cho bd)

Vì b,d > 0 nên bd > 0. Do đó \(\frac{a}{b}< \frac{c}{d}\) (rút gọn tử và mẫu)

Bình luận (0)
NT
16 tháng 6 2016 lúc 18:18

a, Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cb}{db}\Rightarrow ad< cb\) 

b, Ta có: \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)

Bình luận (0)
TA
Xem chi tiết
NQ
7 tháng 9 2021 lúc 21:07

a. Nếu : \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}\times bd< \frac{c}{d}\times bd\left(\text{ do }bd>0\right)\)

\(\Leftrightarrow ad< bc\) vậy ta có điều phải chứng minh

b. nếu \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\) vậy ta có đpcm

Bình luận (0)
 Khách vãng lai đã xóa
TA
7 tháng 9 2021 lúc 21:14

Mk cảm ơn

Bình luận (0)
 Khách vãng lai đã xóa
DC
Xem chi tiết
HP
6 tháng 7 2016 lúc 15:56

\(a,\frac{a}{b}< \frac{c}{d}=>\frac{ad}{bd}< \frac{bc}{bd}=>ad< bc\left(đpcm\right)\)

\(b,ad< bc=>\frac{ad}{bd}< \frac{bc}{bd}=>\frac{a}{b}< \frac{c}{d}\left(đpcm\right)\)

Bình luận (0)
DC
9 tháng 7 2016 lúc 14:03

gggggggggggggggggggggggg

Bình luận (0)
DH
Xem chi tiết
HG
17 tháng 6 2016 lúc 22:29

- Chứng minh thuận:

Nhân 2 vế của a/b với d, nhân 2 vế của c/d với b rồi so sánh

- Chứng minh đảo: Hơi khó giải thích...

Cộng ad với bd và bc với bd.... 

Bình luận (0)
DL
18 tháng 6 2016 lúc 5:02

Có gì mà loằng ngoằng vậy.

1./ Thuận: Nếu: \(\frac{a}{b}>\frac{c}{d}\)nhân cả 2 vế BĐT với tích bd >0 (vì b>0; d>0) BĐT không đổi chiều, ta có: \(\frac{a}{b}\cdot bd>\frac{c}{d}\cdot bd\Rightarrow a\cdot d>b\cdot c\)đpcm

2./ Nghịch: Nếu \(a\cdot d>b\cdot c\)chia cả 2 vế BĐT với tích bd >0 (vì b>0; d>0) BĐT không đổi chiều, ta có: \(\frac{a\cdot d}{b\cdot d}>\frac{b\cdot c}{b\cdot d}\Rightarrow\frac{a}{b}>\frac{c}{d}\)đpcm

Bình luận (0)
HA
Xem chi tiết
H24
Xem chi tiết
LF
24 tháng 8 2016 lúc 23:29

a)Do bd>0 (do b>0, d>0) nên nếu \(\frac{a}{b}< \frac{c}{d}\) thì ad<bc

b)Ngược lại, nếu ad<bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)

Bình luận (0)