Những câu hỏi liên quan
H24
Xem chi tiết
LH
28 tháng 8 2016 lúc 20:15

bài này có thể sử dụng máy tính cầm tay tính. Nhập biểu thức đó vào xong rồi ấn nút CALC ở góc trên bên trái dưới SHIFT rồi nhập 2005 vào rồi ấn bằng là ra nha!

Bình luận (0)
DS
Xem chi tiết
PK
Xem chi tiết
PH
Xem chi tiết
KN
24 tháng 6 2020 lúc 22:42

Ta có :

\(x=2005\Rightarrow x+1=2006\)

Thay \(2006=x+1\) vào biểu thức trên ta được : 

\(x^{2005}-\left(x+1\right)x^{2004}+\left(x+1\right)x^{2003}-\left(x+1\right)x^{2002}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(=x^{2005}-x^{2005}+x^{2004}-x^{2004}+x^{2003}-...-x^3+x^2-x^2+x-1\)

\(=x-1\) mà \(x=2005\)

\(\Rightarrow x^{2005}-2006.x^{2004}+2006.x^{2003}-2006.x^{2002}+...-2006.x^2+2006x-1=2005-1=2004\)

Bình luận (0)
 Khách vãng lai đã xóa
VQ
Xem chi tiết
NM
10 tháng 12 2015 lúc 13:01

\(A=x^{2005}-2005x^{2004}-x^{2004}+2005x^{2003}+x^{2003}-2005x^{2002}-.....+x^3-2005x^2-x^2+2005x+x-2005+2004\)\(=\left(x-2005\right)x^{2004}-\left(x-2005\right)x^{2003}+\left(x-2005\right)x^{2002}-....+\left(x-2005\right)x^2-\left(x-2005\right)x+\left(x-2005\right)+2004\)\(=\left(x-2005\right)\left(x^{2004}-x^{2003}+x^{2002}-......+x^2-x+1\right)+2004\)

Với x = 2005 => x - 2005 =0

=> A =2004

Bình luận (0)
H24
10 tháng 11 2017 lúc 21:18

sao ao dieu the

Bình luận (0)
H24
10 tháng 11 2017 lúc 21:20

sao ma 2006.x2004 lai = 2005x2004 - x2004 duoc

Bình luận (0)
PK
Xem chi tiết
DL
10 tháng 12 2015 lúc 12:20

Thay x=2005 vào biểu thức, ta được:

20052005-2006*20052004+...+2006*20052-2006*2005-1

=20052005-(2006*20052004-..-2006*20052+2006*2005+1)

Đặt A=(2006*20052004-..-2006*20052+2006*2005+1)

2005A=2006*20052005-..-2006*20053+2006*20052+2005

2005A+2005*2006=2006*20052005-..-2006*20053+2006*20052+2006*2005+1+2004=A+2004

2005A-A=2004-2005*2006

2004A=2004-2005*2006

A=(2004-2005*2006)/2004=1-(2005*2006)/2004

=>20052005-(2006*20052004-..-2006*20052+2006*2005+1)=20052005-1+(2005*2006)/2004

đến đây cậu làm được chưa, quy đồng lên rồi tính, phân phối ra ý

Bình luận (0)
PK
Xem chi tiết
DY
Xem chi tiết
SP
Xem chi tiết
TH
12 tháng 1 2021 lúc 15:51

Với x = 2005 ta có

\(x^{2005}-2006x^{2004}+2006x^{2003}-2006x^{2002}+...-2006x^2+2006x-1\)

\(=\left(x^{2005}-2005x^{2004}\right)-\left(x^{2004}-2005^{2003}\right)+\left(x^{2003}-2005x^{2002}\right)-...-\left(x^2-2005x\right)+\left(x-2005\right)+2006\)

\(=\left(x-2005\right)\left(x^{2004}-x^{2003}+x^{2002}-...-x+1\right)+2006=2006\).

Bình luận (0)