Những câu hỏi liên quan
H24
Xem chi tiết
SV
4 tháng 5 2015 lúc 18:40

Ta có 1 = x+y+z = (x+y) +z

Áp dụng bđt Cauchy với 2 số dương x+y và z ta đc : \(1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z\)

hay \(1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z\)(vì x+y >0) (*)

Ta lại có \(\left(x+y\right)^2\ge4xy\)(**)

Từ (*) và (**) => \(x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16\)

Dấu = xảy ra <=> x = y ; x+y+z =1 và (x+y)/xyz = 16

Giải hệ này ta đc x = y = 1/4 và z = 1/2

Bình luận (0)
VD
7 tháng 5 2015 lúc 17:19

Ta có 1 = x+y+z = (x+y) +z

Áp dụng bđt Cauchy với 2 số dương x+y và z ta đc : $1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z$1=(x+y)+z≥2√(x+y)z⇒12≥4(x+y)z

hay $1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z$1≥4(x+y)z⇒x+y≥4(x+y)2z(vì x+y >0) (*)

Ta lại có $\left(x+y\right)^2\ge4xy$(x+y)2≥4xy(**)

Từ (*) và (**) => $x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16$x+y≥16xyz⇒x+yxyz ‍≥16

Dấu = xảy ra <=> x = y ; x+y+z =1 và (x+y)/xyz = 16

Giải hệ này ta đc x = y = 1/4 và z = 1/2

Bình luận (0)
H24
16 tháng 5 2018 lúc 22:34

Áp dụng (a + b)> 4, ta có:

\(\left(x+y+z\right)^2\ge4\left(x+y\right)z\text{ hay }1\ge4\left(x+y\right)z\left(1\right)\) (vì x + y + z = 1) 

\(\Rightarrow\frac{\left(x+y\right)}{xyz}\ge4\left(x+y\right)^2\frac{z}{xyz}\left(\text{Nhân hai vế (1) với: }\frac{\left(x+y\right)}{xyz}\right)\)

\(\Rightarrow\frac{\left(x+y\right)}{xyz}\ge4.\frac{4xyz}{xyz}=16\left(\text{vì: }\left(x+y\right)^2\ge4xy\right)\)

\(\Rightarrow MIN_A=16\Leftrightarrow x=y;x+y=z;x+y+z=1\)

\(\Rightarrow x=y=\frac{1}{4};z=\frac{1}{2}\)

Bình luận (0)
PV
Xem chi tiết
BQ
9 tháng 4 2017 lúc 22:20

có thể nhiều cách giải hãy chọn 1 cách

Bình luận (0)
BQ
9 tháng 4 2017 lúc 22:21

khó hiểu

Bình luận (0)
QC
Xem chi tiết
H24
Xem chi tiết
NL
2 tháng 7 2021 lúc 17:53

Không tồn tại min của T

Muốn biểu thức này tồn tại min thì cần thêm điều kiện ví dụ x;y;z>0

Bình luận (0)
H24
2 tháng 7 2021 lúc 18:24

với x,y,z<0

`=>` Min_T không tồn tại

Với x,y,z>0

Ta áp dụng bđt cosi cho 3 số dương:

`x+y+z>=3root{3}{xyz}`

Mà `x+y+z=xyz`

`=>xyz>=3root{3}{xyz}`

`<=>(xyz)^3>=27xyz`

Chia 2 vế cho `xyz>0` ta có:

`(xyz)^2>=27`

`<=>xyz>=3sqrt3`

Dấu "=" xảy ra khi `x=y=z`

Mặt khác`x+y+z=xyz`

`<=>3x=x^3`

`<=>x^2=3`

`<=>x=sqrt3`

`<=>x=y=z=sqrt3`

Bình luận (0)
H24
3 tháng 7 2021 lúc 11:36

x,y,z là số dương

 

Bình luận (0)
TN
Xem chi tiết
TD
7 tháng 1 2018 lúc 22:21

A=x^3 +y^3 +z^3+ 2(x/y+z  +y/z+x  +z/x+y)  \(\ge x^3+y^3+z^3+2.\frac{3}{2}\)  (bạn vào tìm BĐT nesbit là sẽ cm cái đằng sau >= 3/2)

Áp dụng cô si \(x^3+y^3+z^3\ge3xyz=3\)

===> A\(\ge3+3=6\) khi x=y=z=1

Bình luận (0)
VT
Xem chi tiết
H24
20 tháng 6 2020 lúc 20:57

P min = 2 nhá tại (0;0;2).

Bình luận (0)
 Khách vãng lai đã xóa
GL
21 tháng 6 2020 lúc 9:05

Từ giả thiết suy ra \(x\le2\)

\(4=x^2+y^2+z^2+xyz\le x^2+y^2+z^2+2yz\le x^2+\left(y+z\right)^2+2x\left(y+z\right)=\left(x+y+z\right)^2\)

Vậy \(x+y+z\ge2\)

Min P=2 với (x,y,z)=(2;0;0) và các hoán vị

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
21 tháng 6 2020 lúc 11:11

Bạn tham khảo lời giải của thầy Nghiệp ở đây nhé ! Vào TKHĐ của mình để xem ảnh 

Bình luận (0)
 Khách vãng lai đã xóa
TU
Xem chi tiết
XO
29 tháng 1 2022 lúc 10:46

Có \(P=\dfrac{x+z}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xy}=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}\)

\(=\dfrac{4}{y\left(x+z\right)}=\dfrac{4}{y\left(4-y\right)}=\dfrac{4}{-y^2+4y}=\dfrac{4}{-\left(y-2\right)^2+4}\ge1\)

"=" xảy ra khi y = 2 ; x = 1 ; z = 1

Bình luận (0)
TU
29 tháng 1 2022 lúc 10:37

Giúp mình câu này với ah.

 

Bình luận (0)
TH
29 tháng 1 2022 lúc 11:00

Ta có x+y+z=4

=>y=4-x-z

Ta có :x,y,z>0

=>\(x^2>0,z^2>0\)

=>\(x^2z>0,z^2x>0\)

Áp dụng bất đẳng thức cô si với hai số dương \(x^2z\) và z ta có

      \(x^2z+z\)>=2\(\sqrt{x^2z.z}\)

<=>\(x^2z+z>=2xz\)

CMTT:\(z^2x+x>=2xz\)

=>\(x^2z+z+z^2x+x>=4xz\)

=>\(x+z>=4xz-x^2z-z^2x\)

=>\(x+z>=xz\left(4-x-z\right)\)

Mà y=4-x-z(cmt)

=>\(x+z>=xyz\)

=>\(\dfrac{x+z}{xyz}>=1\)

hay \(P>=1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x^2z=z\\z^2x=x\\x+y+z=4\end{matrix}\right.\)

                        <=>\(\left\{{}\begin{matrix}x^2=1\\z^2=1\\x+y+z=4\end{matrix}\right.\)  

                        <=>\(\left\{{}\begin{matrix}x=1\\z=1\\1+y+1=4\end{matrix}\right.\)

                        <=>\(\left\{{}\begin{matrix}x=1\\z=1\\y=2\end{matrix}\right.\)

Vậy tại x=1, y=2,z=1 thì P có giá trị nhỏ nhất là 1

Bình luận (0)
NH
Xem chi tiết
KK
28 tháng 10 2020 lúc 22:21

a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)

Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)

Vật bất đẳng thức được chứng minh

Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết