cho tam giaác ABC có đường trung tuyến BD và CE cắt nhau tại G. CM: BD+CE>3/2BC
nhanh lên
Cho tam giác ABC có BC = 8 cm, các đường trung tuyến BD, CE cắt nhau tại G. Chứng minh BD + CE > 12 cm.
Bài 1: Cho tam giác ABC có đường truyến BD và CE cắt nhau tại G. Gọi I, K là trung điểm GB, GC. Chứng minh DE// IK và DE = IK.
Bài 2: Cho tam giác ABC có đường trung tuyến BD và CE. Gọi M, N là trung điểm BE, CD. Gọi MN cắt BD tại I và MN cắt CE tại I. Chứng minh MI = IK = KN.
Bài 1:
Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
I là trung điểm của GB
K là trung điểm của GC
Do đó: IK là đường trung bình của ΔGBC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra DE//IK và DE=IK
Cho tam giác ABC có BC = 8cm , các đg trung tuyến BD , CE cắt nhau tại G .
Cm : BD + CE > 12cm
Ta có G là trọng tâm tam giác ABC (BG=2BD/3 ; CG=2CG/3):
⇒ BD+CE= 3(BG+CG)/2 (1)
Xét tam giác BGC (trong một tam giác thì tổng hai cạnh luôn lớn hơn cạnh còn lại):
⇒ BG+CG > BC (2)
Từ (1) và (2), ta suy ra: BD+CE >3BC/2 ⇔ BD+CE > 12 (cm)
cho tam giác ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G. Biết BD=CE. Chứng minh DG+EG > \(\dfrac{1}{2} \)BC
DG+EG=1/3BD+1/3CE=2/3BD=BG>1/2BC
cho tam giác ABC có BD và CE là đường trung tuyến cắt nhau tại G. Biết BD=CE
a,chứng minh BG=CG;DG=GE
b,chứng minh tam giác ABC cân
Bài 1: 2 đường trung tuyến AM và BN của tam giác ABC cắt nhau tại G
a) S ABN= 1,5 S ABG
b) Cho S ABG=105 cm. Tính S ABC
Bài 2: Cho tam giác ABC 2 trung tuyến BD và CE cắt nahu tại G cho biết BC=10cm, BD=9cm, CE-12cm
a) CM góc BGC=90 độ
b) S ABC?
Cho tam giác ABC có 2 đường trung tuyến BD và CE cắt nhau tại G . Gọi I và K lần lượt là trung điểm của GB và GC cm rằng: A) DE//IK và DE=IK B) tam giác GED=tam giác GKI C) GE=1/3 CE
Cho tam giác ABC vuông tại A có 2 đường trung tuyến BD và CE cắt nhau tại . B+BD=CE. Chứng minh tam giác ABC cân tại A
Cho tam giác ABC có các đường trung tuyến BD và CE cắt nhau tại G. Gọi I là trung điểm BD và K là trung điểm CE. Chứng minh EI, DK, AG đồng qui