Những câu hỏi liên quan
DL
Xem chi tiết
NH
23 tháng 8 2015 lúc 17:08

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Bình luận (0)
TQ
9 tháng 6 2017 lúc 14:31

\(\frac{a}{b}\)\(\frac{a\left(a+n\right)}{b\left(b+n\right)}\)\(\frac{ab+an}{b^2+bn}\)

\(\frac{a+n}{b+n}\)\(\frac{\left(a+n\right)b}{\left(b+n\right)b}\)\(\frac{ab+nb}{b^2+bn}\)

Nếu a < b thì ab + an < ab + nb => \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

Nếu a > b thì ab + an > ab + nb => \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

Nếu a = b thì ab + an = ab + nb => \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

Bình luận (0)
NM
Xem chi tiết
KL
23 tháng 6 2016 lúc 10:06

* Nếu \(\frac{a}{b}>1\) thì \(a>b\)\(\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\)

* Nếu \(\frac{a}{b}=1\) thì \(a=b\)\(\Rightarrow\frac{a}{b}=\frac{a+n}{b+n}=1\)

* Nếu \(\frac{a}{b}< 1\) thì \(a< b\)\(\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\) 

Bình luận (0)
DH
18 tháng 1 2018 lúc 9:46

a,b là hai số nguyên cùng dấu

Bình luận (0)
TT
Xem chi tiết
ST
28 tháng 1 2018 lúc 11:42

1,

Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)

\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)

\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)

Dấu "=" xảy ra khi x = 0, y = 13

Vậy Pmin = 6/7 khi x = 0, y = 13

2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)

Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6

Bình luận (0)
ST
28 tháng 1 2018 lúc 11:51

3,

Ta có: \(10\le n\le99\)

\(\Rightarrow20\le2n\le198\)

\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)

\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)

\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)

Ta thấy chỉ có 36 là số chính phương 

Vậy n = 32

4,

ÁP dụng TCDTSBN ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy B = 8 

Bình luận (0)
ST
28 tháng 1 2018 lúc 12:11

5,

Ta so sánh 3227 và 1839

3227 =(25)27 = 2135 < 2156 = (24)39 = 1639 < 1839

Vậy (-32)27 > (-18)39

6, làm tương tự 2

Bình luận (0)
NN
Xem chi tiết
HS
10 tháng 4 2018 lúc 20:21

a)A=n/n+1=n/n+0/1

   B=n+2/n+3=n/n  +  2/3

ta có:0<2/3

=>A<B

Bình luận (0)
KV
Xem chi tiết
CH
Xem chi tiết
ND
20 tháng 6 2016 lúc 21:05

Bó tay.com

Bình luận (0)
NT
Xem chi tiết
KA
9 tháng 6 2017 lúc 14:34

Tìm trước khi hỏi , google-sama chưa tính phí mà !

Câu hỏi của phạm minh anh - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
TQ
9 tháng 6 2017 lúc 14:37

\(\frac{a}{b}\)\(\frac{a\left(a+n\right)}{b\left(b+n\right)}\) = \(\frac{ab+an}{b^2+bn}\)

\(\frac{a+n}{b+n}\)\(\frac{\left(a+n\right)b}{\left(b+n\right)b}\)\(\frac{ab+nb}{b^2+bn}\)

Nếu a < b thì ab + an < ab + nb => \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

Nếu a > b thì ab + an > ab + nb => \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

Nếu a = b thì ab + an = ab + nb => \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

Bình luận (0)
TX
9 tháng 6 2017 lúc 14:38

Ta có:

\(\frac{a}{b}=\frac{a.\left(b+n\right)}{b.\left(b+n\right)}=\frac{ab+an}{b.\left(b+n\right)}\)

\(\frac{a+n}{b+n}=\frac{\left(a+n\right).b}{b.\left(b+n\right)}=\frac{ab+bn}{b.\left(b+n\right)}\)

TH1: a>b => an>bn => ab+an>ab+bn => \(\frac{a}{b}>\frac{a+n}{b+n}\)

TH2: a<b => \(\frac{a}{b}< \frac{a+n}{b+n}\)

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 23:20

a) \({u_n} = \frac{{n + 1}}{n}= 1+ \frac{{1}}{n} > 1\).

b) \({u_n} = \frac{{n + 1}}{n}= 1+ \frac{{1}}{n} < 2\).

Bình luận (0)
HP
Xem chi tiết
H24
11 tháng 3 2016 lúc 20:36

học trước chương trình ak, mk chưa học đn dạng này

Bình luận (0)
TN
14 tháng 3 2016 lúc 20:57

cái này đâu fai Bất phương trình

Bình luận (0)