Những câu hỏi liên quan
NS
Xem chi tiết
TL
Xem chi tiết
DL
Xem chi tiết
FF
Xem chi tiết
DA
Xem chi tiết
DH
15 tháng 11 2021 lúc 21:58

Giống mình làm

 

Bình luận (0)
DL
Xem chi tiết
NQ
Xem chi tiết
MS
9 tháng 3 2018 lúc 4:03

\(A+B+C=a^2bc+ab^2c+abc^2\)

\(A+B+C=abc\left(a+b+c\right)=abc.1=abc\)

Vậy: \(A+B+C=abc\left(đpcm\right)\)

Bình luận (0)
TH
Xem chi tiết
HN
Xem chi tiết
NL
1 tháng 3 2022 lúc 17:43

Với các số dương x;y ta có:

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

Áp dụng:

\(\Rightarrow P=\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{ab\left(a+b\right)+abc}+\dfrac{1}{bc\left(b+c\right)+abc}+\dfrac{a}{ca\left(c+a\right)+abc}\)

\(\Rightarrow P\le\dfrac{abc}{ab\left(a+b+c\right)}+\dfrac{abc}{bc\left(a+b+c\right)}+\dfrac{abc}{ca\left(a+b+c\right)}\)

\(\Rightarrow P\le\dfrac{c}{a+b+c}+\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

\(P_{max}=1\) khi \(a=b=c=1\)

Bình luận (0)
CH
Xem chi tiết
NN
5 tháng 4 2020 lúc 16:07

\(a+b+c\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow a+b+c\ge3.\frac{ab+bc+ca}{abc}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) ( luôn đúng ) 

Dấu " = " xảy ra <=> \(a=b=c=\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa