Tìm x thuộc Z để:
E=\(\frac{5-x}{x-2}\)đạt GTNN
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a,Tìm x để:E=(3-6x)2+4 đạt giá trị nhỏ nhất
b,Tìm y để:G=\(\frac{2}{\left(3y+7\right)^2+5}\)đạt giá trị lớn nhất
Tìm x thuộc Z đê các biểu thức sau đạt GTNN D= \(\frac{x+5}{x-4}\)
Tìm x thuộc z để các bt sau đạt GTLN
P= \(\frac{5}{\left(x-3\right)^2}+1\)
Q= \(\frac{4}{\left|x-2\right|+2}\)
1) Cho A= \(\frac{13}{17-x}\)
a) Tìm x thuộc Z để A thuộc Z
b)Tìm X thuộc Z để A đạt GTLN
đạt GTNN
2) Cho B=\(\frac{40-3x}{13-x}\)
a) Tìm x thuộc Z để B thuộc Z
b)Tìm X thuộc Z để B đạt GTLN
đạt GTNN
OLm chọn cho em với để em còn có hứng làm tiếp !
trời ạ , muốn OLM chọn thì phải hay , đúng , trả lời trước
1) a) Để A thuộc Z thì 17 - x là ước của 13
=> \(17-x\in\left(1;-1;13;-13\right)\)
=> \(x\in\left(16;18;4;30\right)\)
b) Để A đạt GTLN thì 17 - x đạt giá trị dương nhỏ nhất. Do đó 17 - x = 1
=> x=16
Để A đạt GTNN thì 17-x đạt giá trị âm lớn nhất. Do đó 17-x =-1
=> x=18
2) \(B=\frac{40-3x}{13-x}=\frac{39+1-3x}{13-x}=\frac{3\left(13-x\right)+1}{13-x}=3+\frac{1}{13-x}\)
Để B nguyên thì 13-x là ước của 1.
=> 13 -x = 1 hoặc -1
=> x=12 hoặc x=14
b) Để B đạt GTLN thì 1/(13-x) đạt giá trị dương lớn nhất.
=> 13-x đạt giá trị dương nhỏ nhất
=> 13-x=1 => x=12
Để B đạt GTNN thì 1/(13-x) đạt giá trị âm nhỏ nhất
=> 13-x đạt giá trị âm lớn nhất
=> 13-x=-1
=> x=14
Cho A = \(\frac{x-13}{x+3}\)
a) Tìm x thuộc Z để A thuộc Z
b) Tìm x thuộc Z để A đạt GTNN
\(A=\frac{x-13}{x+3}\inℤ\Leftrightarrow x-13⋮x+3\)
\(\Rightarrow x+3-16⋮x+3\)
\(x+3⋮x+3\)
\(\Rightarrow16⋮x+3\)
tự làm tiếp!
b, \(A=\frac{x-13}{x+3}=\frac{x+3-16}{x+3}=\frac{x-3}{x-3}-\frac{16}{x+3}=1-\frac{16}{x+3}\)
để A đạt giá trị nhỏ nhất thì \(\frac{16}{x+3}\) lớn nhất
=> x+3 là số nguyên dương nhỏ nhất
=> x+3=1
=> x = -2
vậy x = -2 và \(A_{min}=1-\frac{16}{1}=-15\)
Tìm x thuộc Z để:
A= x-3/x-5 đạt GTNN
\(A=\dfrac{x-3}{x-5}\)
\(A=\dfrac{x-5}{x-5}+\dfrac{2}{x-5}\)
\(A=1+\dfrac{2}{x-5}\)
Để A đạt GTNN thì \(x-5\) đạt giá trị âm lớn nhất.
Do đó: \(x-5=-1\Rightarrow x=4\)
Vậy \(x=4\) thì A đạt GTNN.
Cho \(A=\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
a) Rút gọn A
b) Tìm x thuộc Z để A thuộc Z
c) Tìm x để A đạt GTNN
2) Cho B= \(\frac{40-3x}{13-x}\)
a) Tìm x thuộc Z để B thuộc Z
b)Tìm X thuộc Z để B đạt GTLN
đạt GTNN
\(B=\frac{40-3x}{13-x}=\frac{39+1-3x}{13-x}=\frac{3\left(13-x\right)+1}{13-x}=3+\frac{1}{13-x}\)
Để B nguyên thì \(13-x\) là ước của 1.
\(\Rightarrow\begin{cases}13-x=1\\13-x=-1\end{cases}\Rightarrow\begin{cases}x=12\\x=14\end{cases}\)
b) Để B đạt GTLN thì \(\frac{1}{\left(13-x\right)}\) đạt giá trị dương lớn nhất.
\(\Rightarrow13-x\) đạt giá trị dương nhỏ nhất
\(\Rightarrow13-x=1\Rightarrow x=12\)
Để B đạt GTNN thì \(\frac{1}{\left(13-x\right)}\) đạt giá trị âm nhỏ nhất
\(\Rightarrow13-x\) đạt giá trị âm lớn nhất
\(\Rightarrow13-x=-1\)
\(\Rightarrow x=14\)
Cho A = \(\frac{10x+13}{2x+4}\)
a) Tìm x thuộc Z để A thuộc Z
b) Tìm x thuộc Z để A đạt GTNN
a, \(A=\frac{10x+13}{2x+4}\inℤ\Leftrightarrow10x+13⋮2x+4\)
\(\Rightarrow10x+20-7⋮2x+4\)
\(\Rightarrow5\cdot2x+5\cdot4-7⋮2x+4\)
\(\Rightarrow5\left(2x+4\right)-7⋮2x-4\)
\(5\left(2x+4\right)⋮2x+4\)
\(\Rightarrow7⋮2x-4\)
tới đây bn liệt kê Ư(7) rồi làm tiếp.
b, \(A=\frac{10x+13}{2x+4}=\frac{10x+20-7}{2x+4}=\frac{5\left(2x+4\right)}{2x+4}-\frac{7}{2x+4}=5-\frac{7}{2x+4}\)
để A đạt giá trị nhỏ nhất thì \(\frac{7}{2x+4}\) lớn nhất
=> 2x+4 là số nguyên dương nhỏ nhất
+ xét 2x+4 = 1
=> 2x = -3
=> x = -1,5 loại vì x thuộc Z
+ xét 2x+4=2
=> 2x = -2
=> x = -1 (tm)
vậy x = 1 và \(A_{min}=5-\frac{7}{2}=\frac{3}{2}\)
Tìm x thuộc Z để \(\frac{17}{x-2016}\)đạt GTLN, GTNN
Để \(\frac{17}{x-2016}\)đạt giá trị lớn nhất thì \(x-2016\)là số nguyên dương nhỏ nhất \(\Rightarrow x-2016=1\)
\(\Rightarrow x=2017\)