Cho tam giác ABC có AB < AC. Kẻ tia phân giác AD của góc A (D thuộc BC). Chứng minh DC-DB<AC-AB
cho tam giác ABC có AB = AC. Kẻ tia phân giác AM của góc BAC ( M thuộc BC )a. Chứng minh : Tam giác BAM = tam giác CAM
b. Chứng minh : AM vuông góc BC
c. Trên nửa mặt phẳng bờ BC không chứa điểm A lấy điểm D sao cho DB = DC. Chứng minh rằng : AD là trung trực BC
Cho tam giác ABC có AB = AC. AD là tia phân giác của góc A (D thuộc BC). Chứng minh:
a, tam giác ABD = tam giác ACD
b, DB = DC
a) Xét tam giác ABD và tam giác ACD, có:
AB = AC ( Giả thiết ) (1)
AD chung (2)
Góc BAD = CAD ( D là tia phân giác của góc A ) (3)
Từ (1); (2); (3) => tam giác ABC = tam giác ACD ( c-g-c)
b) Tam giác ABC = tam giác ACD => DB = DC ( 2 cạnh tương ứng ).
Chúc bạn học tốt!
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A (D thuộc BC). a) Tính DB/DC. b) Kẻ đường cao AH (H thuộc BC). Chứng minh tam giác AHB đồng dạng tam giác CHA
cho tam giác ABC vuông tại B, đường cao BH, có AB=3cm, BC=4cm
a, chứng minh tam giác HBA đồng dạng với tam giác BAC
b, tính AC, BH
c, kẻ tia phân giác AD (D thuộc BC). Tính DB, DC
d, từ D, kẻ DE vuông góc với AC (E thuộc AC). chứng minh AB.DE=AE.DB
cho tam giác ABC vuông tại A có AB<AC, kẻ đường phân giác BD của ABC( D thuộc AC). Kẻ DM vuông góc với BC tại M
a) Chứng minh tam giác DAB= tam giác DMB
b) Chứng minh DK=Dc và AD<DC
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
b: AD=DM
DM<DC
=>AD<DC
Cho tam giác ABC có A=600,AB<AC,đường cao BH (H thuộc AC)
a) So sánh: góc ABC và góc ACB. Tính ABH
b) Vẽ AD là tia phân giác của góc A (D thuộc BC), Vẽ BI vuông góc AD tại I. Chứng minh: tam giác AIB = tam giác BHA
c) Tia BI cắt AC ở E. chứng minh tam giác ABE đều
d) chứng minh DC>DB
1. cho tam giác ABC bất kì , có:AB=4cm, AC=6cm, AD là phân giác góc A
a)tính DB/DC
b)tính DC khi DC=3cm
2. cho tam giác ABC vuông tại A, có AB=3cm,AC=4cm.vẽ đường cao AH(H thuộc BC)
a) tính độ dài BC
b) chứng minh tam giác HBA~HAC
c) chứng minh HA2=HB.HC
d) kẻ đường phân giác AD(D THUỘC BC). TÍNH ĐỘ DÀI DB VÀ DC
Cho tam giác ABC vuông tại A,Ab=8cm,AC=6cm,AD là tia phân giác góc A,D thuộc BC
a,Tính DB/Dc
b,Tính BC,từ đó tính DB,DC làm tròn kết quar 2 chữ số thập phân
c,Kẻ đường cao AH(H thuộc BC).Chứng minh rằng tam giác AHB đồng dạng với tam giác CHA.Tính Diện tích tam giác AHB/Diện tích tam giác CHA
d,Tính AH
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
Vì AD là pg \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\Leftrightarrow\dfrac{DC}{AC}=\dfrac{BD}{AB}\)
Theo tc dãy tỉ số bằng nhau ta có
\(\dfrac{DC}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AB}=\dfrac{10}{14}=\dfrac{5}{7}\Rightarrow DC=\dfrac{30}{7}cm;BD=\dfrac{40}{7}cm\)
Xét tam giác ABC có tia AD là đường phân giác của góc A =>DB/DC = AB/AC
(tính chất của đường phân giác )
<=> DB/DC = 8/6=4/3
1 a, so sánh ABC và ACB . tính góc ABHa, so sánh ABC và ACB . tính góc ABH
b, vẽ AD là p.g củcho tam giác ABC có góc A =600 , AB < AC , đường cao BH [ H thuộc AC]a góc A [ D thuộc BC] , vẽ BI vuông góc AD tại I . chứng minh tam giác AIB =tam giác BHA
c, tia BI cắt AC ở E . chứng minh tam giác ABE đều
d, chứng minh DC >DB
2
TAM GIÁC ABC VUÔNG TẠI A ĐƯỜNG PHÂN GIÁC BD . KẺ AE VUÔNG BD , AE CẮT BC Ở K
a, BIẾT AC = 8cm AB=6cm . TÍNH BC
b, TAM GIÁC ABK LÀ TAM GIÁC GÌ
c, CHỨNG MINH DK VUÔNG BC .
d, KẺ AE VUÔNG BC. CHỨNG MINH AK LÀ TIA PHÂN GIÁC CỦA GÓC HAC
3
CHO TAM ABC CÓ AB=3cm AC=4cm BC=5cm
a, TAM GIÁC ABC LÀ TAM GIÁC GÌ
b, VẼ BD LÀ PHÂN GIÁC CỦA GÓC B. TRÊN CẠNH BC LẤY DIỂM ED TẠI F. CHỨNG MINH AE SONG SONG FC
c, CHỨNG MINH TAM GIÁC ABH = TAM GIÁC ACH
b, vẽ AD là p.g củcho tam giác ABC có góc A =600 , AB < AC , đường cao BH [ H thuộc AC]a góc A [ D thuộc BC] , vẽ BI vuông góc AD tại I . chứng minh tam giác AIB =tam giác BHA
c, tia BI cắt AC ở E . chứng minh tam giác ABE đều
d, chứng minh DC >DB
GIÚP MIK LÀM 3 BÀI NÀY NHA MÌNH CẢM ƠN