Những câu hỏi liên quan
HN
Xem chi tiết
TL
9 tháng 3 2020 lúc 15:47

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
9 tháng 3 2020 lúc 15:55

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
HT
5 tháng 2 2021 lúc 15:15

undefined

Bình luận (0)
LH
5 tháng 2 2021 lúc 12:33

Giups mik vs

lolang

Bình luận (0)
WS
Xem chi tiết
NM
4 tháng 9 2021 lúc 16:46

\(A=x^2+4x+5=\left(x+2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow x=-2\)

\(B=x^2+10x-1=\left(x+5\right)^2-26\ge-26\)

Dấu \("="\Leftrightarrow x=-5\)

\(C=5-4x+4x^2=\left(2x-1\right)^2+4\ge4\)

Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)

\(D=x^2+y^2-2x+6y-3=\left(x-1\right)^2+\left(y+3\right)^2-13\ge-13\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

\(E=2x^2+y^2+2xy+2x+3=\left(x+y\right)^2+\left(x+1\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow x=-y=-1\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Bình luận (0)
NT
4 tháng 9 2021 lúc 20:38

\(A=x^2+4x+5\)

\(=x^2+4x+4+1\)

\(=\left(x+2\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi x=-2

\(C=4x^2-4x+5\)

\(=4x^2-4x+1+4\)

\(=\left(2x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Bình luận (0)
EH
Xem chi tiết
NT
31 tháng 7 2023 lúc 14:13

A=-x^2+2xy-y^2-x^2+4x-4-36

=-(x-y)^2-(x-2)^2-36<=-36

Dấu = xảy ra khi x=y=2

Bình luận (0)
TD
Xem chi tiết
H24
2 tháng 7 2018 lúc 16:35

\(N=2x^2+y^2+2xy-4x-2y+3\)

\(N=\left(x^2+2xy+y^2\right)+x^2-4x-2y+3\)

\(N=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)+1\)

\(N=\left(x+y-1\right)^2+\left(x-1\right)^2+1\)

Mà  \(\left(x+y-1\right)\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow N\ge1\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)

Vậy  \(N_{Min}=1\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)

Bình luận (0)
H24
2 tháng 7 2018 lúc 16:57

\(N=2x^2+y^2+2xy-4x-2y\)\(+3\)

\(=\left(x^2+2xy+y^2\right)+x^2-2\left(2x+y\right)+3\)

\(=\left[\left(x+y\right)^2-2\left(2x+y\right)+1\right]+2+x^2\)

\(=\left(x+y+1\right)^2+x^2+2\)

\(Do\)\(\left(x+y+1\right)^2\)\(\ge\)\(0\)\(\forall\)\(x\)\(;\)\(y\)

\(x^2\)\(\ge\)\(0\)\(\forall\)\(x\)

=.>\(\left(x+y+1\right)^2+x^2+2\)\(\ge\)\(2\)\(\forall\)\(x\)\(;\)\(y\)

=>\(N\)\(\ge\)\(2\)\(\forall\)\(x\)\(;\)\(y\)

Dấu = xảy ra khi: 

\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\x^2=0\end{cases}}\)

=>\(\hept{\begin{cases}x+y+1=0\\x=0\end{cases}}\)

=>\(\hept{\begin{cases}x+y=-1\\x=0\end{cases}}\)

=>\(\hept{\begin{cases}y=-1\\x=0\end{cases}}\)

Vậy \(N_{min}\)\(=\)\(2\)khi \(y=-1\)\(;\)\(x=0\)

Chúc pạn họk tốt~~~!!! :3

Bình luận (0)
BM
2 tháng 7 2018 lúc 17:01

@jiyoonmin : bn lm như cak mk á

Bình luận (0)
NN
Xem chi tiết
TP
14 tháng 10 2018 lúc 10:09

Câu 1 :

\(E=4x^2+y^2-4x-2y+3\)

\(E=\left(2x\right)^2-2\cdot2x\cdot1+1^2+y^2-2\cdot y\cdot1+1^2+1\)

\(E=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)

Câu 2 :

\(G=x^2+2y^2+2xy-2y\)

\(G=x^2+2xy+y^2+y^2-2.y\cdot1+1^2-1\)

\(G=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)

Bình luận (0)
NN
14 tháng 10 2018 lúc 10:15

Còn câu F bạn ơi. Giúp Gk vs

Bình luận (0)
ST
14 tháng 10 2018 lúc 10:21

\(F=\frac{3}{2x^2+x+1}=\frac{3}{2\left(x^2+\frac{x}{2}+\frac{1}{2}\right)}=\frac{3}{2\left(x^2+2x\cdot\frac{1}{4}+\frac{1}{16}\right)+\frac{7}{8}}=\frac{3}{2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}}\)

Vi \(2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}\ge8\)

\(\Rightarrow\frac{1}{2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}}\le\frac{1}{\frac{7}{8}}\Rightarrow F=\frac{3}{2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}}\le\frac{3}{\frac{7}{8}}=\frac{24}{7}\)

Dấu "=" xảy ra <=>x+1/4=0<=>x=-1/4

Bình luận (0)
LM
Xem chi tiết
NT
8 tháng 11 2021 lúc 23:11

b: \(B=x^3-8y^3-x^3+4x-4x+8y^3+2021=2021\)

Bình luận (0)
DN
8 tháng 11 2021 lúc 23:22

Phân tích đa thức sau thành phân tử 

a, 4x³ - 10x² + 2x

b, x² - 3x + 2

Giúp mk vs m.n

Bình luận (1)
DN
8 tháng 11 2021 lúc 23:58

Hình thang ABCD (AB//CD) có các tia phân giác của các góc A và D gặp nhau tại điểm E thuộc cạnh BC. Chứng minh rằng: 

a, AED = 90°

b, AD = AB + CD 

Giúp mình với mọi người :(((

Bình luận (0)
TT
Xem chi tiết
TM
1 tháng 6 2016 lúc 8:45

\(B=\left(x^2+2xy+y^2\right)+\left(x^2-4x+4\right)+2016\)

\(B=\left(x+y\right)^2+\left(y-2\right)^2+2016\)

Vậy Min B =2016 <=> x=-2;y=2

Bình luận (0)
NA
Xem chi tiết
TM
9 tháng 10 2016 lúc 22:13

\(A=2x^2+2xy+y^2+4x-10\)

=>\(A=\left(x^2+2xy+y^2\right)+\left(x^2+4x+4\right)-14\)

=>\(A=\left(x+y\right)^2+\left(x+2\right)^2-14\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(x+2\right)^2\ge0\end{cases}\Rightarrow}\left(x+y\right)^2+\left(x+2\right)^2-14\ge-14\)

\(\Rightarrow A_{min}=-14\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\x+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=2\end{cases}}}\)

Vậy Amin=-14 tại x=-2 và y=2

Bình luận (0)
DD
9 tháng 10 2016 lúc 21:59

\(A=\left(x^2+2xy+y^2\right)+\left(x^2+4x+4\right)-14\)

\(A=\left(x+y\right)^2+\left(x+2\right)^2-14\)

\(\Rightarrow A_{min}=-14\Leftrightarrow x=-2,y=2\)

Bình luận (0)
H24
16 tháng 3 2017 lúc 22:00

x = -2

y = 2

ai tk mình mình tk lại cho

Bình luận (0)