\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\) và \(x\cdot y\cdot z=20\)
tìm x,y,z
\(\frac{6}{11}\cdot x=\frac{9}{2}\cdot y=\frac{18}{5}\cdot z\)và \(-x+y+z=-120\)
Ta có: \(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Leftrightarrow\frac{-18x}{-33}=\frac{18y}{4}=\frac{18z}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau ta có:
\(\frac{-18x}{-33}=\frac{18y}{4}=\frac{18z}{5}=\frac{18\left(-x+y+z\right)}{-33+4+5}=\frac{18\cdot\left(-120\right)}{-24}=90\)
Do đó:
\(\frac{-18x}{-33}=90\Leftrightarrow x=165\)
\(\frac{18y}{4}=90\Leftrightarrow y=20\)
\(\frac{18z}{5}=90\Leftrightarrow z=25\)
1) Cho \(A=\frac{5x-4}{2x+5}-\frac{3y-3x}{2y-5}\) và \(3x-y=5\).Tính A
2) Tìm \(x,y,z\in Q\)biết :
a) \(x\cdot y=\frac{1}{5};y\cdot z=\frac{4}{5};x\cdot z=\frac{3}{4}\)
b) Đủ tất cá các điều kiện sau :
\(x\cdot y+y\cdot z+y^2=18\)
\(x\cdot\left(x+y+z\right)=-12\)
\(x\cdot z+z^2+y\cdot z=30\)
Thế câu một các cậu làm được chưa
cho x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(M=\frac{x^2\cdot y^2.z^2}{x^2\cdot y^2+y^2\cdot z^2-x^2\cdot z^2}+\frac{x^2\cdot y^2\cdot z^2}{y^2\cdot z^2+x^2.z^2-x^2\cdot y^2}+\frac{x^2\cdot y^2\cdot z^2}{x^2.y^2+x^2\cdot z^2-y^2\cdot z^2}\)
Cho\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\). Hãy tính \(\frac{3\cdot x-y+5\cdot z}{x+y+3\cdot z}\)
Cho \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
\(\frac{3x-y+5z}{x+y+3z}=\frac{3.2k-3k+5.5k}{2k+3k+3.5k}=\frac{6k-3k+25k}{2k+3k+15k}=\frac{28k}{21k}=\frac{4}{3}\)
Kb với minh nha!
Tính tổng:
\(S=\frac{x+1}{x\cdot\left(x-y\right)\cdot\left(x-z\right)}+\frac{y+1}{y\cdot\left(y-z\right)\cdot\left(y-x\right)}+\frac{z+1}{z\cdot\left(z-x\right)\left(z-y\right)}\)
\(S=\frac{yz\left(x+1\right)\left(y-z\right)-zx\left(y+1\right)\left(x-z\right)+xy\left(z+1\right)\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
+ \(yz\left(x+1\right)\left(y-z\right)-zx\left(y+1\right)\left(x-z\right)+xy\left(z+1\right)\left(x-y\right)\)
\(=yz\left(x+1\right)\left(y-z\right)-zx\left(y+1\right)\left[\left(y-z\right)+\left(x-y\right)\right]\)
\(+xy\left(z+1\right)\left(x-y\right)\)
\(=\left(y-z\right)\left[yz\left(x+1\right)-zx\left(y+1\right)\right]+\left(x-y\right)\left[xy\left(z+1\right)-zx\left(y+1\right)\right]\)
\(=\left(y-z\right)\left[z\left(y-x\right)\right]+\left(x-y\right)\cdot x\cdot\left(y-z\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
\(\Rightarrow S=\frac{1}{xyz}\)
Cho x,y,x là các số thỏa mãn xyz=2016
CMR: \(\frac{2016\cdot x}{x\cdot y+2016\cdot x+2016}+\frac{y}{y\cdot z+y+2016}+\frac{z}{x\cdot z+z+1}=1\)
\(\frac{2016.x}{xy+2016x+2016}+\frac{y}{yz+y+2016}+\frac{z}{xz+z+1}\)= \(\frac{2016x}{xy+2016x+1}+\frac{xy}{xyz+xy+2016x}+\frac{xyz}{xxyz+xyz+xy}\) = \(\frac{2016x}{xy+2016x+xyz}+\frac{xy}{xyz+xy+2016x}+\frac{xyz}{2016x+xyz+xy}\)
=\(\frac{2016x+xy+xyz}{2016x+xy+xyz}=1\)
cho:\(y=\frac{b\cdot z-c\cdot y}{a}=\frac{c\cdot x-a\cdot z}{b}=\frac{a\cdot y-b\cdot x}{c}.CMR\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
đố ai làm được bài toán này trong vong nhanh nhất
nhưng viết phân số kiểu j nhỉ
Ta có: [(b.z- c.y)/a] = [(c.x-a.z)/b] = [(a.y- b.x)/c]
=>[(a.b.z- c.a.y)/a2] = [(c.b.x- a.b.z)/b2] = [(a.y.c - b.c.x)/c2]
rồi cộng vào ra bằng 0
tự làm tiếp
Bài 1 : Tìm x,y,z biết:
a, \(\frac{x}{5}=\frac{y}{2}\)và \(x\cdot y=160\)
b, \(\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{6}\)và \(5z-3x-4y=50\)
c,\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)và \(xyz=20\)
Mình đang cần gấp, mong mn giúp đỡ
a) ĐẶT \(\frac{x}{5}=\frac{y}{2}=k;\frac{x}{5}=k\Rightarrow x=5k;\frac{y}{2}=k\Rightarrow y=2k\)
ta có \(x.y=160\)
thay\(5k.2k=160\)
\(k^2.10=160\)
\(k^2=16\)
\(\Rightarrow k=\pm4\)
do đó
\(\frac{x}{5}=\pm4\Rightarrow\hept{\begin{cases}\frac{x}{5}=4\\\frac{x}{5}=-4\end{cases}\Leftrightarrow\hept{\begin{cases}x=5.4=20\\x=5.\left(-4\right)=-20\end{cases}}}\)
\(\frac{y}{2}=\pm4\Rightarrow\hept{\begin{cases}\frac{y}{2}=4\\\frac{y}{2}=-4\end{cases}\Leftrightarrow\hept{\begin{cases}y=2.4=8\\y=2.\left(-4\right)=-8\end{cases}}}\)
vậy các x,y thỏa mãn là \(\left\{x=20;y=8\right\}\left\{x=-20;y=-8\right\}\)
a) X*Y=160
=>X=160/Y (1)
X/5 =Y/2
=> 2x=5y(tính chất tỉ lệ thức)
=>x=5Y/2 (2)
(1),(2)=> 160/y = 5y/2
=> y=8
b) Ta có : \(\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{6}\)
\(\Rightarrow\frac{3x-3}{6}=\frac{4y-12}{16}=\frac{5z-25}{30}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{6}=\frac{3x-3}{6}=\frac{4y-12}{16}=\frac{5z-25}{30}=\frac{5z-25-3x+3-4y+12}{30-6-16}\) \(=\frac{\left(5z-3x-4y\right)-10}{8}=\frac{50-10}{8}=\frac{40}{8}=5\)
\(\Rightarrow\hept{\begin{cases}x-1=10\\x-3=20\\x-5=30\end{cases}\Rightarrow\hept{\begin{cases}x=11\\y=23\\z=35\end{cases}}}\)
c) Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=12k\\y=9k\\z=5k\end{cases}}\)
Khi đó xyz = 20
<=> 12k.9k.5k = 20
=> 540k3 = 20
=> \(k^3=\frac{1}{27}\)
\(\Rightarrow k=\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}x=12.\frac{1}{3}=4\\y=9.\frac{1}{3}=3\\z=5.\frac{1}{3}=\frac{5}{3}\end{cases}}\)
Cho x,y,z khác 0 và x-y-z=0 .
Tính B = \(\left(1-\frac{z}{x}\right)\cdot\left(1-\frac{x}{y}\right)\cdot\left(1+\frac{y}{z}\right)\)
Ta có :
\(x-y-z=0\)
\(\Rightarrow\)\(x-z=y\) \(\left(1\right)\)
\(\Rightarrow\)\(y-x=-z\) \(\left(2\right)\)
\(\Rightarrow\)\(z+y=x\) \(\left(3\right)\)
Lại có :
\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
Thay (1), (2) và (3) vào \(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\) ta được :
\(B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=\frac{xy\left(-z\right)}{xyz}=\frac{\left(-1\right)xyz}{xyz}=-1\)
Vậy \(B=-1\)
Chúc bạn học tốt ~