1/2+1/6+1/12+1/20+1/30+1/x=41/42
x=
1/2+1/6+1/12+1/20+1/30+1/x=41/42=?
41/42 - 1/2 - 1/6 - 1/12 - 1/20 -1/30 = 1/x
1/7 = 1/x
x = 1 / 1/7
x = 7
\(\frac{1}{1X2}+\frac{1}{2X3}+\frac{1}{3X4}+\frac{1}{4X5}+\frac{1}{5X6}+\frac{1}{x}\)= \(\frac{41}{42}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{x}=\frac{41}{42}\)
\(1-\frac{1}{6}+\frac{1}{x}=\frac{41}{42}\)
\(\frac{5}{6}+\frac{1}{x}=\frac{41}{42}\)
\(\frac{1}{x}\) =\(\frac{41}{42}-\frac{5}{6}\)
\(\frac{1}{x}\) = \(\frac{1}{7}\)
VẬy x = 7
k cho mik nha
Tìm x biết :1/2+1/6+1/12+1/20+1/30+1/x=41/42
1/2 + 1/6 + 1/12 + 1/20 + 1/30 1/x = 41/42
5/6 + 1/x = 41/42
1/x = 41/42 - 5/6
1/x = 1/7
vậy x = 7
1/2+1/6+1/12+1/20+1/30+1/x=41/42
tìm x
\(\frac{1}{x}=\frac{41}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(\frac{1}{x}=\frac{1}{7}=>x=7\)
1/2+1/6+1/12+1/20+1/30+1/x=41/42
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{x}=\frac{41}{42}\)
\(\frac{5}{6}+\frac{1}{x}=\frac{41}{42}\)
\(\frac{1}{x}=\frac{41}{42}-\frac{5}{6}\)
\(\frac{1}{x}=\frac{1}{7}\)
Vậy x = 7
1/2+1/6+1/12+1/20+1/30+1/x=41/42
1/2+1/6+1/12+1/20+1/30+1/x=41/42
giai giup minh cau nay nhe
x = 7 . đúng 100%. chọn mình nha.
\(\frac{1}{x}=\frac{41}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(\frac{1}{x}=\frac{1}{7}\). Suy ra \(x\)= 7.
1/2 +1/6 +1/12+1/20+1/30+1/x=41/42
Ta có \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}=\frac{41}{42}\)
mà 6 . 7 bàng 42=> x=42
mà . là dấu nhân
bài 1 1/2+1/6+1/12+1/20+1/30+1/x=41/42
bài 2 (x-273)*(1+3+5....+2015)=0
a,1/2+1/6+1/12+1/20+1/30+1/x=41/42
Giải phương trình :(1/x^2+3x+2)+(1/x^2+5x+6)+(1/x^2+7x+12)+(1/x^2+9x+20)+1(/x^2+11x+30)+(1/x^2+13x+41)=1/2
\(\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{\left(x+2\right)}+\frac{1}{\left(x+2\right)}-\frac{1}{\left(x+3\right)}+\frac{1}{\left(x+3\right)}-...-\frac{1}{x+6}+\frac{1}{\left(x+6\right)}-\frac{1}{\left(x+7\right)}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+7}=\frac{1}{2}\Leftrightarrow\frac{6}{\left(x+1\right)\left(x+7\right)}=\frac{1}{2}\)\(\Leftrightarrow x^2+8x+7=12\Leftrightarrow\left(x+4\right)^2-21=0\Leftrightarrow\left(x+4-\sqrt{21}\right)\left(x+4+\sqrt{21}\right)=0\Rightarrow\left[{}\begin{matrix}x=-4+\sqrt{21}\\x=-4-\sqrt{21}\end{matrix}\right.\)