Bài 5: Phương trình chứa ẩn ở mẫu

BA

Giải phương trình :(1/x^2+3x+2)+(1/x^2+5x+6)+(1/x^2+7x+12)+(1/x^2+9x+20)+1(/x^2+11x+30)+(1/x^2+13x+41)=1/2

TK
23 tháng 2 2020 lúc 14:27

\(\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{\left(x+2\right)}+\frac{1}{\left(x+2\right)}-\frac{1}{\left(x+3\right)}+\frac{1}{\left(x+3\right)}-...-\frac{1}{x+6}+\frac{1}{\left(x+6\right)}-\frac{1}{\left(x+7\right)}=\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+7}=\frac{1}{2}\Leftrightarrow\frac{6}{\left(x+1\right)\left(x+7\right)}=\frac{1}{2}\)\(\Leftrightarrow x^2+8x+7=12\Leftrightarrow\left(x+4\right)^2-21=0\Leftrightarrow\left(x+4-\sqrt{21}\right)\left(x+4+\sqrt{21}\right)=0\Rightarrow\left[{}\begin{matrix}x=-4+\sqrt{21}\\x=-4-\sqrt{21}\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
BA
Xem chi tiết
HN
Xem chi tiết
HS
Xem chi tiết
BT
Xem chi tiết
LN
Xem chi tiết
DK
Xem chi tiết
2G
Xem chi tiết
TV
Xem chi tiết
TV
Xem chi tiết