Những câu hỏi liên quan
DH
Xem chi tiết
KS
Xem chi tiết
KT
8 tháng 5 2018 lúc 21:01

cách khác:

\(B=\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}\)

\(=\frac{3a-2b}{2a+a-2b}+\frac{3b-a}{b-a+2b}\)  (thay 5 = a - 2b)

\(=\frac{3a-2b}{3a-2b}+\frac{3b-a}{3b-a}\)

\(=1+1=2\)

Bình luận (0)
NM
8 tháng 5 2018 lúc 11:56

Biết a - 2b = 5 tính giá trị biểu thức:

\(B=\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}\)

\(=\frac{2a+\left(a-2b\right)}{2a+5}+\frac{3b-a}{b-5}\)

\(=\frac{2a+5}{2a+5}+\frac{b-5}{b-5}\)

\(=1+1=2\)

Vậy B = 2

Bình luận (0)
CV
Xem chi tiết
NQ
9 tháng 1 2018 lúc 20:43

a-2b=5 => a=2b+5

Thay a=2b+5 vào B thì : 

B = 6b+15-2b/4b+10+5 + 3b-2b-5/b-5

   = 4b+15/4b+15 + b-5/b-5 = 1+1 = 2

Tk mk nha

Bình luận (0)
TD
9 tháng 1 2018 lúc 20:44

Ta có : a - 2b = 5 \(\Rightarrow\)2b = a - 5

          a - 2b = 5 \(\Rightarrow\)a = 2b + 5

Thay vào , ta được :

\(B=\frac{3a-\left(a-5\right)}{2a+5}+\frac{3b-\left(2b+5\right)}{b-5}\)

\(B=\frac{3a-a+5}{2a+5}+\frac{3b-2b-5}{b-5}\)

\(B=\frac{2a+5}{2a+5}+\frac{b-5}{b-5}\)

\(B=1+1=2\)

Bình luận (0)
H24
9 tháng 1 2018 lúc 20:50

\(B=\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}\)

\(B=\frac{2a+\left(a-2b\right)}{2a+5}+\frac{b-\left(a-2b\right)}{b-5}\)

\(B=\frac{2a+5}{2a+5}+\frac{b-5}{b-5}\)

\(B=1+1=2\)

Vậy 

Bình luận (0)
CH
Xem chi tiết
MH
Xem chi tiết
TA
20 tháng 7 2017 lúc 15:32

Từ a-2b=5  =>  a = 2b+5 

Thay 2b + 5 vào a, ta có biểu thức  :

\(\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}=\frac{3.\left(2b+5\right)-2b}{2.\left(2b+5\right)+5}+\frac{3b-\left(2b+5\right)}{b-5}\)

\(=\frac{6b+15-2b}{4b+10+5}+\frac{3b-2b-5}{b-5}=\frac{4b+15}{4b+15}+\frac{b-5}{b-5}=1+1=2\)

Bình luận (0)
VC
19 tháng 7 2017 lúc 23:25

thay a-2b vào biểu thức cần tính

Bình luận (0)
VC
19 tháng 7 2017 lúc 23:26

thay a-2b vào biểu thức cần tính

Bình luận (0)
LD
Xem chi tiết
TN
13 tháng 4 2017 lúc 18:14

Ta có: \(\frac{2a^2+3b^2}{2a^3+3b^3}\left(a+b\right)=1+ab\frac{2a+3b}{2a^3+3b^3}\)

Áp dụng BĐT Holder ta có: 

\(\left(2a^3+3b^3\right)\left(2+3\right)^2\ge\left(2a+3b\right)^3\)

Vậy ta có thể viết lại BĐT cần chứng minh như sau;

\(VT\left(a+b\right)\le2+25ab\left(\frac{1}{\left(2a+3b\right)^2}+\frac{1}{\left(2b+3a\right)^2}\right)\)

Nó đủ để ta có thể thấy rằng 

\(25ab\left[\left(2b+3a\right)^2+\left(2a+3b\right)^2\right]\le2\left(2a+3b\right)^2\left(2b+3a\right)^2\)

\(\Leftrightarrow59\left(a^2-b^2\right)^2+13\left(a^4+b^4-a^3b-ab^3\right)\ge0\)

BĐT cuối cùng đúng nên ta có ĐPCM

Bình luận (0)
ND
3 tháng 5 2020 lúc 9:32

ok jjj

Bình luận (0)
 Khách vãng lai đã xóa
TL
3 tháng 5 2020 lúc 9:33

Đặt \(\frac{a}{b}=t\)do a>0, b>0 nên t>0

Khi đó BĐT \(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2}{3b^3}+\frac{2b^2+3a^2}{2b^3+3a^2}\le\frac{4}{a+b}\left(1\right)\)trở thành

\(\frac{2t^2+3}{2t^3+3}+\frac{2+3t^2}{3+3t^3}\le\frac{4}{t+1}\)

\(\Leftrightarrow\left(2t^2+3\right)\left(2+3t^2\right)\left(t+1\right)+\left(2+3t^2\right)\left(2t^2+1\right)\left(t+1\right)\le4\left(2t^3+3\right)\left(2+3t^2\right)\)

\(\Leftrightarrow\left(t+1\right)\left(12t^5+13t^3+13t^2+12\right)\le4\left(6t^6+13t^3+6\right)\)

\(\Leftrightarrow12\left(t^6-t^5-t+1\right)-13t^2\left(t^2-12t+1\right)\ge0\)

\(\Leftrightarrow12\left(t-1\right)^2\left[12\left(t^4+t^3+t^2+t+1\right)-13t^2\right]\ge0\)

\(\Leftrightarrow\left(t-1\right)^2\left[12\left(t^4+t^3+t^2+t+1\right)-13t^2\right]\ge0\left(2\right)\)

Ta có \(12\left(t^4+t^3+t^2+t+1\right)-13t^2=12t^4+12t\left(t-1\right)^2+23t^2+12>0\forall t>0\)

BĐT (2) đúng với mọi t>0

=> BĐT (1) đúng với mọi a,b>0

Dấu "=" xảy ra <=> t=1 <=> a=b

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
MT
4 tháng 9 2021 lúc 20:24
Chúc ngủ ngonDạo này có gì mới không?Chúc mừng sinh nhật
Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TK
25 tháng 3 2020 lúc 15:55

Ta CM BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},a+b\ge2\sqrt{ab}\)( co si với a,b>0)

Suy ra \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\RightarrowĐPCM\)\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(1\right)\)

a/Áp dụng (1) có

\(\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\left(2\right)\).Tương tự ta cũng có:

\(\frac{1}{b+c+2a}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\left(3\right),\frac{1}{c+a+2b}\le\frac{1}{4}\left(\frac{1}{b+c}+\frac{1}{a+b}\right)\left(4\right)\)

Cộng (2),(3) và (4) có \(VT\le\frac{1}{4}.\left(6+6\right)=3\left(ĐPCM\right)\)

b/Áp dụng (1) có:

\(\frac{1}{3a+3b+2c}=\frac{1}{\left(a+b+2c\right)+2\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{2\left(a+b\right)}\right)\left(5\right)\)

Tương tự có: \(\frac{1}{3a+2b+3c}\le\frac{1}{4}\left(\frac{1}{a+c+2b}+\frac{1}{2\left(a+c\right)}\right)\left(6\right)\)

\(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{2a+b+c}+\frac{1}{2\left(b+c\right)}\right)\left(7\right)\)

Cộng (5),(6) và (7) có:

\(VT\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{a+c+2b}+\frac{1}{2a+b+c}+\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\right)\le\frac{1}{4}.9=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
AP
Xem chi tiết