Những câu hỏi liên quan
QN
Xem chi tiết
DH
30 tháng 4 2018 lúc 17:29

\(ĐK:\frac{2}{3}\ge x\ge\frac{5}{2}\)

\(PT\Leftrightarrow\left(4x^2-4x+1\right)+\left(2x-5\right)\sqrt{2+4x}-\left(2x+3\right)\sqrt{6-4x}+16=0\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2x-5\right)\sqrt{2+4x}-\left(2x+3\right)\sqrt{6-4x}+16=0\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2x-5\right)\left(\sqrt{2+4x}-2\right)-\left(2x+3\right)\left(\sqrt{6-4x}-2\right)=0\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2x-5\right)\frac{2+4x-4}{\sqrt{2+4x}+2}+\left(2x+3\right)\frac{6-4x-4}{\sqrt{6-4x}+2}=0\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2x-5\right)\frac{2\left(2x-1\right)}{\sqrt{2+4x}+2}+\left(2x+3\right)\frac{-2\left(2x-1\right)}{\sqrt{6-4x}+2}=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-1+\left(2x-5\right)\frac{2}{\sqrt{2+4x}+2}+\left(2x+3\right)\frac{-2}{\sqrt{6-4x}+2}\right)=0\)

Theo ĐK ta chứng minh đc \(\left(2x-1+\left(2x-5\right)\frac{2}{\sqrt{2+4x}+2}+\left(2x+3\right)\frac{-2}{\sqrt{6-4x}+2}\right)>0\)

Do đó \(2x-1=0\Rightarrow x=\frac{1}{2}\left(TMĐKXĐ\right)\)

Bình luận (0)
ND
Xem chi tiết
VM
14 tháng 10 2019 lúc 23:45

\(\sqrt{12-\frac{3}{x^2}}=a\left(a\le\sqrt{12}\right);\sqrt{4x^2-\frac{3}{x^2}}=b\left(b\ge0\right)\)

ta có \(\hept{\begin{cases}a+b=4x^2\\b^2-a^2=4x^2-12\end{cases}}\)<=> \(\hept{\begin{cases}a+b=4x^2\\\left(b-a\right)\left(b+a\right)=4x^2-12\end{cases}< =>\hept{\begin{cases}a+b=4x^2\\b-a=\frac{4x^2-12}{4x^2}\end{cases}}}\)

<=> \(\hept{\begin{cases}b+a=4x^2\\b-a=1-\frac{3}{x^2}\end{cases}}< =>\hept{\begin{cases}b+a=4x^2\\2b=4x^2+1-\frac{3}{x^2}=b^2+1\end{cases}}\)<=> \(\hept{\begin{cases}b+a=4x^2\\\left(b-1\right)^2=0\end{cases}=>b=1}\)

=> 4x2-\(\frac{3}{x^2}=1=>4x^4-x^2-3=0< =>x^2=1\)=> x=1 hoặc x=-1

thay vào phương trình ban đầu  đều thỏa mãn => pt có 2 nghiệm x=1; x=-1

Bình luận (0)
H24
Xem chi tiết
DA
30 tháng 12 2016 lúc 22:38

x=0 nha 

Bình luận (0)
H24
30 tháng 12 2016 lúc 22:44

biết cách làm không

Bình luận (0)
LP
Xem chi tiết
LA
Xem chi tiết
HP
3 tháng 1 2021 lúc 22:07

ĐK: \(-\dfrac{1}{4}\le x\le3\)

\(pt\Leftrightarrow4x+1-6\sqrt{4x+1}+9+3-x-2\sqrt{3-x}+1=0\)

\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)^2+\left(\sqrt{3-x}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4x+1}=3\\\sqrt{3-x}=1\end{matrix}\right.\)

\(\Leftrightarrow x=2\left(tm\right)\)

Bình luận (1)
CD
Xem chi tiết
LN
18 tháng 11 2019 lúc 21:29

\(3x-2\sqrt{4x-3}=3\) (ĐK: \(x\ge1\))

\(\Leftrightarrow2\sqrt{4x-3}=3x-3\)

\(\Leftrightarrow\left(2\sqrt{4-3}\right)^2=\left(3x-3\right)^2\)

\(\Leftrightarrow4\cdot\left(4x-3\right)=9x^2-18+9\)

\(\Leftrightarrow16x-12-9x^2+18x-9=0\)

\(\Leftrightarrow34x-9x^2-21=0\)

\(\Leftrightarrow27x+7x-9x^2-21=0\)

\(\Leftrightarrow\left(27x-9x^2\right)-\left(21-7x\right)=0\)

\(\Leftrightarrow9x\left(3-x\right)-7\left(3-x\right)=0\)

\(\Leftrightarrow\left(3-x\right)\left(9x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3-x=0\\9x-7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(n\right)\\x=\frac{7}{9}\left(l\right)\end{matrix}\right.\)

Vậy: x=3

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
LD
Xem chi tiết
HP
2 tháng 11 2016 lúc 17:50

chiu

tk di@@@@@@@@@@@@@@@@@

bye

09oi

Bình luận (0)
TH
Xem chi tiết
TH
15 tháng 9 2020 lúc 21:40

Phương pháp giải như sau :  

Trước hết phải có ĐKXĐ là  \(x>1\)

Biến đổi phương trình về dạng \(\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4\left(x+1\right)=3\left(\sqrt{2}+1\right)\)        (1)

Áp dụng bất đẳng thức AM-GM Côsi cho 3 số ta có

\(VT=\sqrt{\frac{5\sqrt{2}+7}{x+1}}+4\left(x+1\right)=\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}+\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}+1}+4\left(x+1\right)\) \(\ge3\sqrt[3]{\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}\cdot\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}\cdot4\left(x+1\right)}\)\(=3\sqrt[3]{5\sqrt{2}+7}=3\sqrt[3]{\left(\sqrt{2}+1\right)^3}=3\left(\sqrt{2}+1\right)=VP\)nên

(1)   \(\Leftrightarrow\frac{\sqrt{5\sqrt{2}+7}}{2\sqrt{x+1}}=4\left(x+1\right)\Leftrightarrow x=\frac{\sqrt{2}-3}{4}\)(tm)

Kết luận:...        (Đây chỉ là hướng giải các bạn tự trình bày nhé, chúc học tốt)

Bình luận (0)
 Khách vãng lai đã xóa