Cho x+y=1.Tính giá trị biểu thức:
Q= 2(x^3+y^3) - 3(x^2+y^2)
1>Tìm giá trị nhỏ nhất của biểu thức:A=x^2+2x+3
2>Chứng minh rằng hiệu của hai số nguyên liên tiếp là số lẻ
3>Chứng minh rằng:(x-y)^2-(x+y)^2=-4xy
4>Tìm giá trị lớn nhất của biểu thức:Q=-x^2+6x+1
giải nhanh đi nhé mik cần gấp ai lm đủ đúng hết mik k mun cho nha giải đủ các bước nhé cảm ưn các bạn trước giúp mik nha^.^><hihiii
1) \(A=x^2+2x+3=\left(x+1\right)^2+2 \)
vi \(\left(x+1\right)^2\ge0\)(voi moi x)
\(\Rightarrow\left(x+1\right)^2+2\ge2\)(voi moi x)
Vay GTNN cua A =2 khi x=-1
2) Goi 2 so nguyen lien tiep do la x va x+1
TDTC x+1-x=1
Vi 1 la so le nen x+1-x la so le
Vay .......
3) \(\left(x-y\right)^2-\left(x+y\right)^2=\left(x-y-x-y\right)\left(x-y+x+y\right)\)
\(=-2y\cdot2x=-4xy\)(dpcm)
4) \(Q=-x^2+6x+1=-\left(x^2-6x-1\right)=-\left(x^2-6x+9-10\right)=-\left(x-3\right)^2+10\)
Vi \(\left(x-3\right)^2\ge0\)(voi moi x)
\(\Rightarrow-\left(x-3\right)^2\le0\)(voi moi x)
\(\Rightarrow-\left(x-3\right)^2+10\le10\)(voi moi x)
Vay GTLN cua Q=10 khi x=3
Cho x,y,z thỏa mãn:
x+y+z=7 và \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=3\)
Tính giá trị của biểu thức:Q=\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Tìm giá trị nhỏ nhất của biểu thức:Q=(x+y-3)4 +(x-2y)2+2012
Tớ lp 6 nek -__-
Ta có: (x+y-3)^4>=0
(x-2y)^2>=0
=> Q >= 2012=>Qmin=2012
Vậy: Qmin=2012. Dấu "=" xảy ra khi: x=2;y=1
Cho các số thực x,y thỏa mãn x + y = 2. Tìm GTNN của biểu thức:
Q = \(x^3+y^3+x^2+y^2\)
\(Q=\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy\)
\(Q=8-6xy+4-2xy=12-8xy\)
\(Q=12-8x\left(2-x\right)=12-16x+8x^2=8\left(x-1\right)^2+4\ge4\)
\(Q_{min}=4\) khi \(x=y=1\)
B = 2x(4x + 1) − 8x^2 (x + 1) + (2x)^3 − 2x + 3.
c) C = (x − 1)^3 + (x + 1)^3 + 2x(x + 2)(x − 2).
d) D = (x + y − 5)^2 − 2(x + y − 5)(x + 3) + x^2 + 6x + 9
Câu 2. a) Cho x + y = 7 và x.y = 12. Tính giá trị của biểu thức (x − y)^2 .
b) Cho x + y = 1. Tính giá trị của biểu thức 3(x^2 + y^2 ) − 2(x^3 + y^3 ).
\(B=8x^2+2x-8x^3-8x^2+8x^3-2x+3=3\)
\(C=x^3-3x^2+3x-1+x^3+3x^2+3x+1+2x^3-8x=4x^3-2x\)
\(D=\left(x+y-5\right)^2-2\left(x+y-5\right)\left(x+3\right)+\left(x+3\right)^2=\left(x+y-5-x-3\right)^2=\left(y-8\right)^2\)
câu 2. ta có
a.\(\left(x-y\right)^2=\left(x+y\right)^2-4xy=7^2-4\times12=1\)
b.\(3\left(x^2+y^2\right)-2\left(x^3+y^3\right)=3\left(x+y\right)^2-6xy-2\left(x+y\right)^3+6xy\left(x+y\right)=3-6xy-2+6xy=1\)
1 . Cho x+y=a và x.y=b . Tính giá trị biểu thức sau theo a và b :
a) x2 + y2
b) x3 + y3
c) x4 + y4
d) x5 + y5
2 . Cho x+y=1 .Tính giá trị biểu thức x3 + y3 + 3xy và x-y=1 .Tính giá trị biểu thức x3 - y3 - 3xy
3 . Cho a+b=1 . Tính giá trị biểu thức : M = a3 + b3 + 3ab .( 12 + b2 ) + 6.a2 .b2 . ( a+b)
Cho x+y-2=0. Tính giá trị của biểu thức x^3+x^2*y-*x^2-x*y-y^2+3*y+x-1
Cho biết \(\frac{x}{x^2-x+1}=\frac{2}{3}\).Hãy tính giá trị của biểu thức:Q=\(\frac{x^2}{x^4+x^2+1}\)
Ta có :
\(\frac{x}{x^2-x+1}=\frac{2}{3}\Rightarrow2\left(x^2-x+1\right)=3x\)
⇔ x2 - 5x + 2 = 0
⇔ ( x - 2 ) ( 2x - 1 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\)
Với x = 2 \(\Rightarrow Q=\frac{2^2}{2^4+2^2+1}=\frac{4}{16+4+1}=\frac{4}{21}\)
Với \(x=\frac{1}{2}\Rightarrow Q=\frac{\left(\frac{1}{2}\right)^2}{\left(\frac{1}{2}\right)^4+\left(\frac{1}{2}\right)^2+1}=\frac{\frac{1}{4}}{\frac{1}{16}+\frac{1}{4}+1}=\frac{4}{21}\)
Vậy giá trị của Q là \(\frac{4}{21}\)
Cho x+y=1 Tính giá trị biểu thức: A=2(x^3-y^3)-3(x+y)^2