Những câu hỏi liên quan
H24
Xem chi tiết
NT
2 tháng 10 2021 lúc 23:14

Bài 1:

Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

\(=6n⋮6\)

Bình luận (0)
LL
2 tháng 10 2021 lúc 23:17

1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)

2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)

Bình luận (0)
VL
Xem chi tiết
NM
16 tháng 11 2021 lúc 19:44

Đây là tích 4 số nguyên liên tiếp nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)

Mà 24 chia hết cho 3 và 8 nên n(n+1)(n+2)(n+3) chia hết cho 3 và 8

Bình luận (0)
PM
Xem chi tiết
NN
25 tháng 11 2018 lúc 18:35

+nếu n là số chẵn thì n+2 là số chẵn nên chia hết cho 2,suy ra tích trên chia hết cho 2

+nếu n là số lẻ thì n+5 là số chẵn,chia hết cho 2,vậy tích trên cx chia hết cho 2

Vậy tích trên chia hết cho 2 với mọi n thuộc N

Bình luận (0)
IY
Xem chi tiết
ED
5 tháng 10 2016 lúc 22:27

n(n+3)(n+6)

n(n2+9n+18)

n[(n+1)(n+2)+6n+16)]

n(n+1)(n+2)+6n2+16n chia hết 2

kb với mình nhé

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 12 2019 lúc 15:10

A = n3 – n (có nhân tử chung n)

= n(n2 – 1) (Xuất hiện HĐT (3))

= n(n – 1)(n + 1)

n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên

+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2

+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3

Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.

Bình luận (0)
H24
Xem chi tiết
H24
31 tháng 10 2021 lúc 17:20

\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Vì \(n-1,n,n+1\) là 3 số nguyên liên tiếp nên có 1 số chia hết cho 2,1 số chia hết cho 3

Mà (2,3)=1\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2.3=6\)

Bình luận (0)
TH
Xem chi tiết
CL
Xem chi tiết
HT
2 tháng 1 2019 lúc 21:02

5, 

Ta có :n2 + n + 6 = n(n + 1 ) + 6

Ta có : n( n +1 ) là tích của 2 số tự nhiên liên tiếp

=> n(n+1) không có c/s tận cùng là 9 và 4

=> n(n+1)+6 không có c/s tận cùng là 0 hoặc 5 ( vì đề bài yêu cầu là không chia hết cho 5 )

Vậy n2+ n+ 6 không chia hết cho 5 với mọi n thuộc N

Bình luận (0)
HT
2 tháng 1 2019 lúc 21:18

6, 

Ta có: 012,137,262,387,512,637,762,887 là các số có tận cùng chia cho 125 dư 12

Từ các số trên, ta chọn ra số có tận cùng chia cho 8 dư 3

Số có tận cùng là 387 thì chia cho 8 sẽ dư 3

=> các số có tận cùng là 387

Bình luận (0)

6, Tìm xN,biết :

x chia 8 dư 3; x chia 125 dư 12

giải 

 Theo bài ra, ta có:

x chia 8 dư 3 \(\Rightarrow x-3⋮8\)

và 

x chia 125 dư 12\(\Rightarrow x-12⋮125\)


Có \(x-3⋮8\)nên  \(x-3+616⋮8\Leftrightarrow x+613⋮8\)\(\left(1\right)\)

Có \(x-12⋮125\)nên \(x-12+625⋮125\Leftrightarrow x+613⋮125\)\(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)\(\Rightarrow x+613\in BC\left(8;125\right)\Rightarrow x+613\in B\left(1000\right)=\left\{0,1000,2000,...\right\}\)

\(x\in N\)nên \(x>0\)

\(\Rightarrow x+613=1000\)\(\Rightarrow x=1000-613=387\)

\(\Rightarrow x+613=2000\Rightarrow x=2000-613=1387\)

...........................

Vậy x là số tự nhiên sao cho x=1000k-613\(\left(k\inℕ^∗\right)\)

Bình luận (0)
MY
Xem chi tiết
VH
6 tháng 5 2018 lúc 10:38

\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)

\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)

\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)

Bình luận (0)
H24
6 tháng 5 2018 lúc 9:26

10n+18n-1=10n-1+18n=99.....9(n chữ số 9)+18n

=9.(111....1(n chữ số 1)+2n)

xét --------------------------------=11...1-n+3n

dễ thấy tổng các chữ số của 11....1(n chữ số 1) là n

=>11....1-n chia hết cho 3

=>11.....1-n+3 chia hết cho 3

=>10n+18n-1 chia hết cho 27

Bình luận (0)