x mũ 200= x
x mũ 100=1
(2x-15) mũ 5=(2x-15) mũ 3
bài 1; sắp sếp các đa thức sau theo luỹ thừa giảm dần của biến và thực hiện phép tính chia
a, ( 6x - 5x mũ 2 - 15 + 2x mũ 3 ) : ( 2x - 5 )
b, ( x mũ 3 + 2x mũ 4 - 5x mũ 2 - 3 - 3x ) : ( x mũ 2 - 3 )
c, ( 5x mũ 2 + 15 - 3x mũ 2 - 9x ) : ( 5 - 3x )
d, ( x mũ 3 + x mũ 5 + x mũ 2 + 1 ) : ( x mũ 3 + 1 )
e, ( 3 - 2x + 2x mũ 3 + 5x mũ 2 ) : ( 2x mũ 2 - x + 1 )
=0 bạn nha
sắp sếp các đa thức sau theo luỹ thừa giảm dần và thực hiẹn phép tính chia
d, ( 6x - 5x mũ 2 - 15 + 2x mũ 3 ) : ( 2x - 5 )
e, ( x mũ 3 + x mũ 5 + x mũ 2 + 1 ) : ( x mũ 3 + 1 )\
i, ( 3 - 2x + 2x mũ 3 + 5x mũ 2 ) : ( 2x mũ 2 - x + 1 )
m, ( - x mũ 3 + x mũ 4 + x mũ 4 + x mũ 2 ) : ( x mũ 2 - 2x + 3 )
tìm x, biết:
a) (2x-1) mũ 20= (2x-1)mũ 18
b) ( 2x-3) mũ 2= 9
c) (x-5) mũ 2 = (1-3x)mũ 2
bài 2: Chứng minh rằng:
a) 15 mũ 20 - 15 mũ 19 chia hết cho 14
b) 3 mũ 20 + 3 mũ 21+ 3 mũ 22 chia hết cho 13
c) 3+ 3 mũ 2 + 3 mũ 3+.......+ 3 mũ 2007 chia hết cho 13
7 mũ 1+ 7 mũ 2+ 7 mũ 3+.........+ 7 mũ 4n chia hết cho 400
Bài 1:
a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
b) Ta có: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)
\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)
\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 2:
a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)
b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)
c) \(3+3^2+3^3+...+3^{2007}\)
\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2005}\right)⋮13\)
so sánh các đa thức sau theo luỹ thừa giảm dần của biến và thực hiện phép tính chia
d, ( 6x - 5x mũ 2 - 15 + 2x mũ 3 ) : ( 2x - 5 )
e, ( x mũ 3 + x mũ 5 + x mũ 2 + 1 ) : ( x mũ 3 + 1 )
i, ( 3 - 2x + 2x mũ 3 + 5x mũ 2 ) : ( 2x mũ 2 - x + 1 )
m, ( - x mũ 3 + 3x + x mũ 4 + x mũ 2 ) : ( x mũ 2 - 2x + 3 )
sắp xếp các đa thức sau theo luỹ thừa giảm dần của biến rồi thực hiện phép tính chia
b, ( 6x - 5x mũ 2 - 15 + 2x mũ 3 ) : ( 2x - 5 )
c, ( x mũ 3 + x mũ 5 + x mũ 2 + 1 ) : ( x mũ 3 + 1 )
d, ( 3 - 2x + 2x mũ 3 + 5x mũ 2 ) : ( 2x mũ 2 - x + 1 )
e, ( - 3x mũ 3 + 3x + x mũ 4 + x mũ 2 ) : ( x mũ 2 - 2x + 3 )
Bài 2: Tìm x, biết
a) (x+3) mũ 2 - (x-4)(x+8) = 1
b) (x+3)(x mũ 2 - 3x + 9) -x(x-2)(x+2) = 15
c) (x-2) mũ 2 - (x+3) mũ 2 - 4(x+1) = 5
d) (2x-3)(2x+3) - (x-1) mũ 2 - 3x(x-5) = -44
e) (x-2) mũ 3 - (x-3)(x mũ 2 + 3x + 9) + 6(x+1) mũ 2 = 49
f) 5x(x-3) mũ 2 - 5(x-1) mũ 3 + 15(x+2)(x-2) = 5
g) (x+3) mũ 3 - x(3x+1) mũ 2 + (2x+1)(4x mũ 2 - 2x + 1) - 3x mũ 2 = 42
a) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow\left(x^2+6x+9\right)-\left(x^2+4x-32\right)-1=0\)
\(\Leftrightarrow2x=-40\)
\(\Rightarrow x=-20\)
b) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=-12\)
\(\Rightarrow x=-3\)
c) \(\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)
\(\Leftrightarrow\left(x^2-4x+4\right)-\left(x^2+6x+9\right)-\left(4x+4\right)=5\)
\(\Leftrightarrow-14x=14\)
\(\Rightarrow x=-1\)
d) \(\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)
\(\Leftrightarrow4x^2-9-\left(x^2-2x+1\right)-\left(3x^2-15x\right)=-44\)
\(\Leftrightarrow17x=-34\)
\(\Rightarrow x=-2\)
e) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)
\(\Leftrightarrow24x=24\)
\(\Rightarrow x=1\)
f) \(5x\left(x-3\right)^2-5\left(x-1\right)^3+15\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-60=5\)
\(\Leftrightarrow30x=60\)
\(\Rightarrow x=2\)
g) \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-3x^2=42\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=42\)
\(\Leftrightarrow26x=14\)
\(\Rightarrow x=\frac{7}{13}\)
Tìm x , y biết
a ) x mũ 2 = x mũ 5
b ) ( 3x - 12 )mũ 15 = ( x - 17)mũ 15
c ) ( 4x - 16 )mũ 15 - ( x - 2 )mũ 15 = 0
d ) ( x - 3 )mũ 11 = ( 2x - 6 )mũ 11
bạn có thể check lại đề bài câu a được không ạ
1. 6 X mũ 3 -8 =40
2. 4 X mũ 5 +15=47
3. 2 X mũ 3-4=12
4. 5 X mũ 3-5=0
5. (X -5) mũ 2016 = (X-5) mũ 2018
6. (3X -2) mũ 20= (3X-1) mũ 20
7. (3X -1) mũ 10 = (3X-1) mũ 20
8. (2X -1) mũ 50 = 2X-1
9. (X phần 3 -5) mũ 2000= ( X phần 3-5) mũ 2008
1. \(6x^3-8=40\\ 6x^3=48\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2
2. \(4x^5+15=47\\ 4x^5=32\\ x^5=8\\ \Rightarrow x\in\varnothing\left(\text{vì }x\in N\right)\)Vậy x ∈ ∅
3. \(2x^3-4=12\\ 2x^3=16\\ x^3=8\\ \Rightarrow x=2\)Vậy x = 2
4. \(5x^3-5=0\\ 5x^3=5\\ x^3=1\\ \Rightarrow x=1\)Vậy x = 1
5. \(\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)Vậy \(x\in\left\{5;6\right\}\)
6. \(\left(3x-2\right)^{20}=\left(3x-1\right)^{20}\\ \Rightarrow3x-2=3x-1\\ 3x-3x=2-1\\ 0=1\left(\text{vô lí}\right)\)Vậy x ∈ ∅
7. \(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\\ \left(3x-1\right)^{10}=\left[\left(3x-1\right)^2\right]^{10}\\ \Rightarrow\left(3x-1\right)^2=3x-1\\ \left(3x-1\right)^2-\left(3x-1\right)=0\\ \left(3x-1\right)\left[\left(3x-1\right)-1\right]=0\\ \left(3x-1\right)\left(3x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-1=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=1\\3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\left(\text{loại vì }x\in N\right)\\x=\frac{2}{3}\left(\text{loại vì }x\in N\right)\end{matrix}\right.\)Vậy x ∈ ∅
8. \(\left(2x-1\right)^{50}=2x-1\\ \left(2x-1\right)^{50}-\left(2x-1\right)=0\\ \left(2x-1\right)\left[\left(2x-1\right)^{49}-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}2x-1=0\\\left(2x-1\right)^{49}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=1\\2x-1=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\left(\text{loại vì }x\in N\right)\\x=1\left(t/m\right)\end{matrix}\right.\)Vậy x = 1
9. \(\left(\frac{x}{3}-5\right)^{2000}=\left(\frac{x}{3}-5\right)^{2008}\\ \left(\frac{x}{3}-5\right)^{2008}-\left(\frac{x}{3}-5\right)^{2000}=0\\ \left(\frac{x}{3}-5\right)^{2000}\left[\left(\frac{x}{3}-5\right)^8-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(\frac{x}{3}-5\right)^{2000}=0\\\left(\frac{x}{3}-5\right)^8=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}-5=0\\\frac{x}{3}-5=1\\\frac{x}{3}-5=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\frac{x}{3}=5\\\frac{x}{3}=6\\\frac{x}{3}=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\cdot3=15\\x=6\cdot3=18\\x=4\cdot3=12\end{matrix}\right.\)Vậy \(x\in\left\{15;18;12\right\}\)
\(1.6x^3-8=40\\ \Leftrightarrow6x^3=48\\ \Leftrightarrow x^3=8\Leftrightarrow x^3=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}\)
\(2.4x^3+15=47\) (T nghĩ đề là mũ 3)
\(\Leftrightarrow4x^3=32\Leftrightarrow x^3=8=2^3=\left(-2\right)^3\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}\)
Câu 3, 4 tương tự nhé.
\(5.\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\\ \Leftrightarrow\left(x-5\right)^{2018}-\left(x-5\right)^{2016}=0\\ \Leftrightarrow\left(x-5\right)^{2016}\left[\left(x-5\right)^2-1\right]=0\\ \Leftrightarrow\left(x-5\right)^{2016}\left(x-5-1\right)\left(x-5+1\right)=0\\ \Leftrightarrow\left(x-5\right)^{2016}\left(x-6\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-5\right)^{2016}=0\\x-6=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x=6\\x=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\\x=4\end{matrix}\right.\)
Vậy \(x\in\left\{4;5;6\right\}\)