Những câu hỏi liên quan
ZZ
Xem chi tiết
NM
12 tháng 5 2016 lúc 7:33

Đặt vế trái là A ta có:

\(\frac{A}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)

\(\frac{A}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\)

\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow A=\frac{x-1}{x+1}\)

\(\Rightarrow\frac{x-1}{x+1}=\frac{2007}{2009}\Leftrightarrow x=2003\)
 

Bình luận (0)
DT
29 tháng 11 2022 lúc 22:20

\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow...

Bình luận (0)
DT
29 tháng 11 2022 lúc 22:21
12 tháng 5 2016 lúc 7:33  

Đặt vế trái là A ta có:

\frac{A}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}

\frac{A}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}

Bình luận (0)
H24
Xem chi tiết
XO
7 tháng 6 2019 lúc 15:17

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.(x+1)}=\frac{2007}{2009}\)

=> \(2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2017}{2019}\)

=> \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2017}{2019}\)

=> \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)

=> \(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}:2\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)

=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2017}{4018}\)

=> \(\frac{1}{x+1}=\frac{1}{2019}\)

Vì 1 = 1

=> x + 1 = 2019

=> x       = 2019 - 1

=> x       = 2018

Bình luận (0)

tra

r lời 

x=2018 

chúc bn 

hc tốt

Bình luận (0)
DL
7 tháng 6 2019 lúc 16:30

Trả lời:

x = 2018

~ Học tốt ~

......................

Bình luận (0)
VL
Xem chi tiết
DH
15 tháng 5 2021 lúc 21:39

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}\)

\(=2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{x+1-x}{x\left(x+1\right)}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{x+1}\right)\)

\(=1-\frac{2}{x+1}\)

Phương trình ban đầu tương đương với: 

\(1-\frac{2}{x+1}=\frac{2007}{2009}\)

\(\Leftrightarrow x=2008\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
SN
29 tháng 4 2015 lúc 10:24

1.1/3+1/6+1/10+...+2/x.(x+1)=2007/2009

=>2/6+2/12+2/20+...+2/x.(x+1)=2007/2009

=>1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/(x+1)=2007/2009:2

=>1/2-1/(x+1)=2007/4018

=>1/(x+1)=1/2-2007/4018

=>1/x+1=1/2009

=>x+1=2009

=>x=2009-2008

=>x=1

vậy x=1

 

Bình luận (0)
DC
28 tháng 4 2018 lúc 21:18

làm đúng rồi nhưng phần: 

x+1=2009

x=2009-1

x=2008

mà bạn

Bình luận (0)
CF
4 tháng 6 2020 lúc 15:07

Đặt A= \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\times\left(x+1\right)}=\frac{2007}{2009}\)

    \(\Rightarrow\) \(\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\times\left(x+1\right)}=\frac{2007}{4018}\)  

\(\Leftrightarrow\frac{1}{2}A=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{x\times\left(x+1\right)}=\frac{2007}{4018}\)

\(\Leftrightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(\Leftrightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(\Rightarrow A=1-\frac{2}{x+1}=\frac{2007}{2009}\)

\(\Rightarrow\frac{2}{x+1}=1-\frac{2007}{2009}\)

\(\Leftrightarrow\frac{2}{x+1}=\frac{2}{2009}\)

\(\Rightarrow x+1=2009\)

\(\Leftrightarrow x=2009-1\)

\(\Leftrightarrow x=2008\)

Vậy x=2008

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
NU
24 tháng 4 2018 lúc 20:42

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)

\(\Rightarrow2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}\div2\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2007}{4018}\)

\(\Rightarrow\frac{1}{x+1}=\frac{2}{4018}=\frac{1}{2009}\)

\(\Rightarrow x+1=2009\)

\(\Rightarrow x=2008\)

Bình luận (0)
H24
24 tháng 4 2018 lúc 20:48

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

=>\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2007}{4018}\)(nhân cả hai vế với \(\frac{1}{2}\))

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)\(\frac{2007}{4018}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(\frac{1}{x+1}\)=\(\frac{1}{2}-\frac{2007}{4018}\)

\(\frac{1}{x+1}=\frac{1}{2009}\)

x+1=2009

x=2009-1=2008

Vậy x bằng 2008

Bình luận (0)
CH
6 tháng 5 2018 lúc 20:06

x=2008

Bình luận (0)
AO
Xem chi tiết
NC
18 tháng 4 2019 lúc 13:28

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Em tham khảo nhé!

Bình luận (0)
H24
18 tháng 4 2019 lúc 13:33

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

=>\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)

=> \(2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)

=> \(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

=> \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}:2=\frac{2007}{4018}\)

=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2007}{4018}=\frac{2009}{4018}-\frac{2007}{4018}\)

=> \(\frac{1}{x+1}=\frac{2}{4018}=\frac{1}{2009}\)

=> \(1\cdot2009=1\left(x+1\right)\)

=> \(x+1=2009\Rightarrow x=2009-1=2008\)

Vậy x = 2008

Chúc bn hk tốt !

Bình luận (0)
NT
Xem chi tiết
PM
6 tháng 5 2019 lúc 14:39

(Mẹo: Thông thường thì p/s cuối cùng sẽ là quy luật của tất cả các p/s trong dãy này)

Giải:

Ta có: \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}:2=\frac{2007}{2009}.\frac{1}{2}=\frac{2007}{4018}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2007}{4018}=\frac{2009-2007}{4018}=\frac{1}{2009}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2009}\Rightarrow x+1=2009\)\(\Leftrightarrow x=2009-1=2008\)

Vậy: x=2008

Bình luận (0)
NL
Xem chi tiết
TP
5 tháng 8 2017 lúc 18:59

b)

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2007}{2009}\)

\(=\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+...+\frac{2}{x.\left(x+1\right)}=\frac{2007}{2009}\)

\(=\frac{1}{2}.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2007}{2009}\)

\(=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}:\frac{1}{2}\)

\(=\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(=\frac{1}{x-1}=\frac{1}{2009}\Leftrightarrow x+1=2009\)

\(\Rightarrow x=2009-1=2008\)

Bình luận (0)
NL
6 tháng 8 2017 lúc 9:33

Bạn Phúc Trần Tấn bạn có biết làm phần a ko?Giúp mk với ạ!Mai mk cần rùi

Bình luận (0)
H24
Xem chi tiết