gọi A = n2+ n + 1 ( n thuộc N ) . Chứng tỏ rằng :
a) A ko chia hết cho 2
b) A ko chia hết cho 5
Gọi a = n2 + n +1.
chứng tỏ rằng a ko chia hết cho 2
a ko chia hết cho 5
Gọi A = n2 + n +1.Chứng tỏ rằng:
a ko chia hết cho 2
a ko chia hết cho 5
a) \(n^2+n+1=n\left(n+1\right)+1\)
Ta có \(n\left(n+1\right)⋮2\)vì \(n\left(n+1\right)\)là tích 2 số TN liên tiếp . Do đó \(n\left(n+1\right)+1\)không chia hết cho 2
b) \(n^2+n+1=n\left(n+1\right)+1\)
Ta có \(n\left(n+1\right)\)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra \(n\left(n+1\right)\)tận cùng bằng 1,3,7 không chia hết cho 5
Gọi A= n^2 + n+1 ( n thuộc N) Chứng tỏ rằng:
a) A ko chia hết cho 2
b) A ko chia hết cho 5
a) A = n2 + n + 1
A = n.(n + 1) + 1
Vì n.(n + 1) là tích 2 số tự nhiên liên tiếp nên \(n.\left(n+1\right)⋮2\)
Mà \(1⋮̸2\)
Do đó, \(A⋮2̸\)
b) A = n.(n + 1) + 1
Vì n.(n + 1) là tích 2 số tự nhiên liên tiếp nên n.(n + 1) chỉ có thể tận cùng là 0; 2; 6
Do đó A chỉ có thể tận cùng là 1; 3; 7, không chia hết cho 5 (đpcm)
gọi A=n2+n+1 với n thuộc N.Chứng tỏ rằng A ko chia hết cho 2 và ko chia hết cho 5.
\(A=n^2+n+1\)
\(=n\left(n+1\right)+1\)
Vì n(n+1) là tích của hai số tự nhiên liên liếp nên có 1 số chẵn
nên n(n+1) là số chẵn.Suy ra:n(n+1)+1 là số lẻ và ko chia hết cho 2
Vì n(n+1) chỉ có tân còn là:0,2,6 nên n(n+1)+1 chỉ có tận cùng là:1,3,7 ko chia hết cho 5
BÀI 1:
Có bao nhiêu số tự nhiên nhỏ hơn 100 chia cho 5 dư 3
BÀI 2:
Chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n+5) thì chia hết cho 2
BÀI 3:
Gọi A =n2 + n + 1 (n thuộc N)
a) A ko chia hết cho 2
b)A ko chia hết cho 5
1)Các số chia cho 5 dư 3 có tận cùng là 3 hoặc 8. Mỗi chục có 2 số. Vậy có tất cả:2.10=20(số)
2)Xét 2 trường hợp n lẻ và n chẵn
3)SGK
a) n(n+1) chia hết 2 vì n(n+1) là tích của 2 số tự nhiên liên tiếp. Do đó n(n+1)+1 ko chia hết cho 2
b) n^2+n+1=n(n+1)+1
Ta có: n(n+1) là tích của hai số tự nhiên liên tiếp nên tận cùng là 0;2;6. Suy ra n(n+1)+1 tận cùng = 1;3;7 ko chia hết cho 5
Gọi A là=n2 +n+1(n thuộc N).Chứng tỏ rằng
a)A ko chia hết cho 2
b)A ko chia hết cho 5
HELP ME,giải chi tiết nha
Ta có :
n2+n+1
= n(n+1)+1
Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên có tận cùng là 0,2,6
=> n(n+1)+1 có tận cùng là 1,3,7
Tận cùng là 1 ,3,7 không chia hết cho 2
không chia hết cho 5
Vậy n2+n+1 không chia hết 2 và không chia hết 5
#học tốt#
cho A = n2+n+1 ( n thuộc N )
chứng tỏ rằng A ko chia hết cho 2
A không chia hết cho 5
Ta có : A = n2 + n + 1 = n(n+1) +1
+) Chứng minh A \(⋮̸\) 2
=> Giả sử n(n + 1 ) \(⋮\)2
Nhưng 1 \(⋮̸\) 2
=> A \(⋮̸\) 2
+) Chứng minh A \(⋮̸\) 5
=> Giả sử n(n+1) \(⋮\) 5
Nhưng 1 \(⋮̸\) 5
=> A \(⋮̸\) 5
Chứng minh rằng: A=n2+n+1 ko chia hết cho 2 và 5,∀ n∈N
n 2+n+1 = n(n + 1) +1.
Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6
Do đó n(n+1) + 1 có chữ số tận cùng là 1, 3, 7.
Vì 1, 3, 7 không chia hết cho 2 và 5 nên n(n+1) + 1 không chia hết cho 2 và 5
Vậy n 2+n+1 không chia hết cho 2 và 5
a) n2+n+1=n(n+1)+1
Ta có n(n+1)⋮2vì n(n+1)n(n+1)là tích 2 số TN liên tiếp . Do đó n(n+1)+1không chia hết cho 2
- n2+n+1=n(n+1)+1
Ta có n(n+1)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra n(n+1)tận cùng bằng 1,3,7 không chia hết cho 5
tham khao
https://olm.vn/hoi-dap/detail/93364253.html
bài 1
Cho biết 3a + 2b chia hết cho 17 ( a, b thuộc N) .Chứng minh rằng 10a+b chia hết cho 17
bài 2
Cho biết a-5b chia hết cho 17 (a, b thuộc N).Chứng minh rằng 10a+b chia hết cho 17
bài 3
a, CMR : nếu a3x+5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N ). Điều ngược lại có đúng ko?
b, CMR : nếu 2x+3y chia hết cho 17 thì 9x + 5y chia hết cho 17 ( x,y thuộc N ) . Điều ngược lại có đúng ko?
sssssssssssss