C/mR: 3a + 2b chia hết 17 \(\Leftrightarrow\)10a + b chia hết cho 17 (a,b thuộc Z)
Chứng minh rằng 3a + 2b chia hết cho 17 khi 10a + b chia hết cho 17 (a,b thuộc Z)
Ta có:
\(2.\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b\)
\(=17a\)
\(\text{Vì 17⋮}17\Rightarrow17a⋮17\)
\(\Rightarrow2.\left(10a+b\right)-\left(3a+2b\right)⋮17\)
\(\text{Vì }3a+2b⋮17\Rightarrow2.\left(10a+b\right)\)
\(\text{Mà (2,10)=1}\Rightarrow10a+b⋮17\)
=> 3a + 2b chia hết cho 17 khi 10a + b chia hết cho 17 (a,b ∈ Z ) (đpcm )
Chứng minh rằng: 3a+2b chia hết cho 17 <=> 10a+b chia hết cho 17 (a,b thuộc Z)
Giúp mk với...
Có 3a+2b :17
=> 3a+2b+17a :17
20a+2b :17
2(10a+b) :17. Mà ƯCLN(2;17)=1 => 10a+b :17
Ủng hộ mk nha
Đặt \(10a+b\) là \(N\) và \(M=3a+2b\)
Ta có M + 17a = 3a+2b+17a = 2 ( 10a+7 ) = 2 N
+ Nếu N chia hết cho 7 thì 2N chia hết cho 17
Suy ra M + 17a chia hết cho 17 , suy ra M chia hết cho 17
+ Nếu M chia hết cho 17 thì M + 17a chia hết cho 17
Suy ra 2N chia hết cho 17 , suy ra N chia hết cho 17
1. a, Cho biết 3a+2b chia hết cho 17 (a,b thuộc N). Chứng minh 10a+b chia hết co 17
b, Biết a-5b chia hết cho 17. Chứng minh 10a+b chia hết cho 17(a,b thuộc N)
a, Giả sử 10a + b \(⋮\) 17 (1)
Vì 3a + 2b \(⋮\) 17 nên 8(3a + 2b) \(⋮\) 17
=> 24a + 16b \(⋮\) 17 (2)
Từ (1) và (2) suy ra (10a + b) + (24a + 16b) \(⋮\) 17
=> 10a + b + 24a + 16b \(⋮\) 17
=> (10a + 24a) + (16b + b) \(⋮\) 17
=> 34a + 17b \(⋮\) 17
=> 17(2a + b) \(⋮\) 17
=> Giả sử đúng
Vậy 10a + b \(⋮\)17 (đpcm)
b, Giả sử 10a + b \(⋮\) 17 (1)
Vì a - 5b \(⋮\) 17 nên 7(a - 5b) \(⋮\) 17
=> 7a - 35b \(⋮\) 17 (2)
Từ (1) và (2) suy ra (10a + b) + (7a - 35b) \(⋮\) 17
=> 10a + b + 7a - 35b \(⋮\) 17
=> (10a + 7a) + (b - 35b) \(⋮\) 17
=> 17a + (-34b) \(⋮\) 17
=> 17.[a + (-2)b] \(⋮\) 17
=> Giả sử đúng
Vậy 10a + b \(⋮\) 17 (đpcm)
không biết
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
51a:17
=> 51a-a+5b:17
=> 50a+5b:17
=> 5(10a+b):17
=> 10a+b:17
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
Cho a , b thuộc N . 3a+2b chia hết cho 17 chứng minh 10a+b chia hết cho 17
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
Ta có \(3a+2b⋮17\)
\(\Rightarrow9\left(3a+2b\right)⋮17\)
\(\Leftrightarrow27a+18b⋮17\)
\(\Leftrightarrow17\left(a+b\right)+10a+b⋮17\)
\(\Leftrightarrow10a+b⋮17\left(đpcm\right)\)
Cho 3a+2b chia hết cho 17( a,b thuộc N). CMR 10a+b chia hết cho 17
Nếu 3a + 2b chia hết cho 17 ( với a,b thuộc N) thì 10a + b chia hết cho 17
Ta có :
2 . ( 10a + b ) - ( 3a + 2b ) = 20a + 2b - 3a - 2b
= 17a
Vì 17a chia hết cho 17
=> 2 . ( 10a + b ) - ( 3a + 2b ) chia hết cho 17
Vì ( 3a + 2b ) chia hết cho 17
=> 2 . ( 10a + b ) chia hết cho 17
Mà ( 2 ; 17 ) = 1
=> ( 10a + b ) chia hết cho 17
Vậy ( 3a + 2a ) chia hết cho 17 thì ( 10a + b ) chia hết cho 17
Theo đề bài ra, ta có:
\(\left(3a+2b\right)⋮17\)\(\Rightarrow\)\(3a+2b+17a⋮17\)( vì \(17⋮17\))
\(\Rightarrow\)\(10a+2b⋮17\)
\(\Leftrightarrow\)\(2.\left(10a+b\right)⋮17\)
Mà \(\left(2;7\right)=1\)
\(\Rightarrow\)\(10a+b⋮17\)\(\left(đpcm\right)\)
cho a,b thuộc N và 3a+2b chia hết cho 17 , chứng tỏ 10a+b chia hết 17
A=3a+2b ; B=10a+b
=> 10 A -3B = 30a+20b - 30a -3b = 17b chia hết cho 17
Vì A=3a+2b chia hết cho 17 => 10A chia hết cho 17 => 3B chia hết cho 17
=> B=10a+b chia hết cho 17.